MongoDB +Dataframe+excel透视表

读取MongoDB中的表

from pymongo import MongoClient
import pandas as pd
client = MongoClient('IP地址', 27017)

db = client['AOI']
collection = db['表名'] #替换为实际的名称
document = collection.find({'time':{'$gte':'2023-08-15 15:26:06'}})#筛选数据
df = pd.DataFrame(list(document))#转换为python常用的dataframe
# df = df[(df["time"] >= '2023-08-15 15:26:06')]
df["marks"] = df["marks"].astype('str')
df = df[df["marks"].str.contains("name")] #筛选数据
df = df.loc[:, ['_id', 'id', 'marks', 'time']] #选择想要的列
df.to_csv('path.csv', index=False)

Dataframe合并:

  1. 横向合并(增加列数)(跟据共同列来合并,如果有不同列则添加列)

(数据库的某些表数据太多无法保存到本地,直接merge取交集)

on=['串号']: 根据共同列进行合并,一定要保证有相同列名,不然会报错。

how='inner':取交集

df1 = pd.read_csv('D:\df1.csv', encoding='gbk')
df2 = pd.read_csv('D:\df2.csv', encoding='gbk')
df_merge = pd.merge(df1, df2, on=['串号'], how='inner')
df_merge.to_csv('D:\df3.csv')
  1. 纵向合并(增加行数)

    merge_df = pd.concat([df1, df2], ignore_index=True)
    merge_df.to_csv('D:\df_merge.csv', index=False)

Dataframe去重:(我发现老是去重失败,不知道为啥)

df = pd.read_csv('D:\AOI\df_merge_expert.csv', encoding='gbk')
df.drop_duplicates(keep='first', inplace=True)
df.to_csv('D:\AOI\df_merge_expert1.csv', index=False)
相关推荐
是小崔啊5 小时前
事务03之MVCC机制
数据库·mysql·事务·
LUCIAZZZ9 小时前
简单的SQL语句的快速复习
java·数据库·sql
Elastic 中国社区官方博客11 小时前
使用真实 Elasticsearch 进行高级集成测试
大数据·数据库·elasticsearch·搜索引擎·全文检索·jenkins·集成测试
@_@哆啦A梦11 小时前
Redis 基础命令
java·数据库·redis
fajianchen11 小时前
MySQL 索引存储结构
数据库·mysql
想做富婆11 小时前
oracle: 多表查询之联合查询[交集intersect, 并集union,差集minus]
数据库·oracle·联合查询
xianwu54313 小时前
反向代理模块jmh
开发语言·网络·数据库·c++·mysql
Leven19952713 小时前
Flink (十三) :Table API 与 DataStream API 的转换 (一)
数据库·sql·flink
geovindu13 小时前
neo4j-community-5.26.0 create new database
数据库·mysql·neo4j
因特麦克斯14 小时前
索引的底层数据结构、B+树的结构、为什么InnoDB使用B+树而不是B树呢
数据库