MongoDB +Dataframe+excel透视表

读取MongoDB中的表

复制代码
from pymongo import MongoClient
import pandas as pd
client = MongoClient('IP地址', 27017)

db = client['AOI']
collection = db['表名'] #替换为实际的名称
document = collection.find({'time':{'$gte':'2023-08-15 15:26:06'}})#筛选数据
df = pd.DataFrame(list(document))#转换为python常用的dataframe
# df = df[(df["time"] >= '2023-08-15 15:26:06')]
df["marks"] = df["marks"].astype('str')
df = df[df["marks"].str.contains("name")] #筛选数据
df = df.loc[:, ['_id', 'id', 'marks', 'time']] #选择想要的列
df.to_csv('path.csv', index=False)

Dataframe合并:

  1. 横向合并(增加列数)(跟据共同列来合并,如果有不同列则添加列)

(数据库的某些表数据太多无法保存到本地,直接merge取交集)

on=['串号']: 根据共同列进行合并,一定要保证有相同列名,不然会报错。

how='inner':取交集

复制代码
df1 = pd.read_csv('D:\df1.csv', encoding='gbk')
df2 = pd.read_csv('D:\df2.csv', encoding='gbk')
df_merge = pd.merge(df1, df2, on=['串号'], how='inner')
df_merge.to_csv('D:\df3.csv')
  1. 纵向合并(增加行数)

    merge_df = pd.concat([df1, df2], ignore_index=True)
    merge_df.to_csv('D:\df_merge.csv', index=False)

Dataframe去重:(我发现老是去重失败,不知道为啥)

复制代码
df = pd.read_csv('D:\AOI\df_merge_expert.csv', encoding='gbk')
df.drop_duplicates(keep='first', inplace=True)
df.to_csv('D:\AOI\df_merge_expert1.csv', index=False)
相关推荐
陌上丨3 小时前
Redis的Key和Value的设计原则有哪些?
数据库·redis·缓存
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
ccecw4 小时前
Mysql ONLY_FULL_GROUP_BY模式详解、group by非查询字段报错
数据库·mysql
JH30734 小时前
达梦数据库与MySQL的核心差异解析:从特性到实践
数据库·mysql
数据知道4 小时前
PostgreSQL 核心原理:如何利用多核 CPU 加速大数据量扫描(并行查询)
数据库·postgresql
麦聪聊数据5 小时前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构
未来之窗软件服务5 小时前
数据库优化提速(四)新加坡房产系统开发数据库表结构—仙盟创梦IDE
数据库·数据库优化·计算机软考
Goat恶霸詹姆斯7 小时前
mysql常用语句
数据库·mysql·oracle
大模型玩家七七7 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
曾经的三心草7 小时前
redis-9-哨兵
数据库·redis·bootstrap