MongoDB +Dataframe+excel透视表

读取MongoDB中的表

复制代码
from pymongo import MongoClient
import pandas as pd
client = MongoClient('IP地址', 27017)

db = client['AOI']
collection = db['表名'] #替换为实际的名称
document = collection.find({'time':{'$gte':'2023-08-15 15:26:06'}})#筛选数据
df = pd.DataFrame(list(document))#转换为python常用的dataframe
# df = df[(df["time"] >= '2023-08-15 15:26:06')]
df["marks"] = df["marks"].astype('str')
df = df[df["marks"].str.contains("name")] #筛选数据
df = df.loc[:, ['_id', 'id', 'marks', 'time']] #选择想要的列
df.to_csv('path.csv', index=False)

Dataframe合并:

  1. 横向合并(增加列数)(跟据共同列来合并,如果有不同列则添加列)

(数据库的某些表数据太多无法保存到本地,直接merge取交集)

on=['串号']: 根据共同列进行合并,一定要保证有相同列名,不然会报错。

how='inner':取交集

复制代码
df1 = pd.read_csv('D:\df1.csv', encoding='gbk')
df2 = pd.read_csv('D:\df2.csv', encoding='gbk')
df_merge = pd.merge(df1, df2, on=['串号'], how='inner')
df_merge.to_csv('D:\df3.csv')
  1. 纵向合并(增加行数)

    merge_df = pd.concat([df1, df2], ignore_index=True)
    merge_df.to_csv('D:\df_merge.csv', index=False)

Dataframe去重:(我发现老是去重失败,不知道为啥)

复制代码
df = pd.read_csv('D:\AOI\df_merge_expert.csv', encoding='gbk')
df.drop_duplicates(keep='first', inplace=True)
df.to_csv('D:\AOI\df_merge_expert1.csv', index=False)
相关推荐
爱上语文32 分钟前
Redis基础(4):Set类型和SortedSet类型
java·数据库·redis·后端
lifallen1 小时前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
Brookty2 小时前
【MySQL】JDBC编程
java·数据库·后端·学习·mysql·jdbc
先做个垃圾出来………2 小时前
SQL的底层逻辑解析
数据库·sql
码不停蹄的玄黓2 小时前
深入拆解MySQL InnoDB可重复读(RR)隔离级别:MVCC+临键锁如何「锁」住一致性?
数据库·mysql·可重复读
paopaokaka_luck3 小时前
基于SpringBoot+Vue的酒类仓储管理系统
数据库·vue.js·spring boot·后端·小程序
薛晓刚4 小时前
哪个领域数据库最难替换?
数据库
芷栀夏4 小时前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
软件2054 小时前
【redis使用场景——缓存——数据淘汰策略】
数据库·redis·缓存
ChinaRainbowSea5 小时前
9-2 MySQL 分析查询语句:EXPLAIN(详细说明)
java·数据库·后端·sql·mysql