Fei-Fei Li-Lecture 16:3D Vision 【斯坦福大学李飞飞CV课程第16讲:3D Vision】

目录

[P1 2D Detection and Segmentation​编辑](#P1 2D Detection and Segmentation编辑)

[P2 Video = 2D + time series](#P2 Video = 2D + time series)

[P3 Focus on Two Problems](#P3 Focus on Two Problems)

[P4 Many more topics in 3D Vision](#P4 Many more topics in 3D Vision)

[P5-10 Multi-View CNN](#P5-10 Multi-View CNN)

[P11 Experiments -- Classification & Retrieval](#P11 Experiments – Classification & Retrieval)

[P12 3D Shape Representations](#P12 3D Shape Representations)

[P13--17 3D Shape Representations: Depth Map](#P13--17 3D Shape Representations: Depth Map)

[P18--26 3D Shape Representations: Surface Normals 曲面法线](#P18--26 3D Shape Representations: Surface Normals 曲面法线)

[P27--34 3D Shape Representations: Point Cloud](#P27--34 3D Shape Representations: Point Cloud)

[P35--66 3D Shape Representations: Triangle Mesh](#P35--66 3D Shape Representations: Triangle Mesh)


P1 2D Detection and Segmentation

Classification分P类:没有空间信息,只是对一张图片进行分类

Semantic Segmentation语义分割: 没有物体,只有像素点,对像素点进行分类

Object Detection目标检测:直接识别出物体并进行分类

Instance Segmentation:实例分割=目标检测+语义分割 (第一次听说这个)

语义分割只需要分出不同类就行,同类的不同个体不需要分,但是Instance Segmentation在语义分割的基础上又把不同的类进行了分割:目标检测后,需要对检测的部分做进一步的语义分割

P2 Video = 2D + time series

视频就是2D的图像加上了时间序列

P3 Focus on Two Problems

今天需要解决的两个问题

①由一张输入图像得到一个3D模型

②识别3D模型进行类别判定

P4 Many more topics in 3D Vision

3D Representations 三维表示法
Computing Correspondences 计算对应关系
Multi-view stereo 多视角立体
Structure from Motion 运动结构
Simultaneous Localization and Mapping (SLAM) 同步定位和绘图
View Synthesis 视图合成
Differentiable Graphics 可变图形
3D Sensors 三维传感器

P5-10 Multi-View CNN

CNN1:提取图像特征的卷积神经网络

CNN2:生成描述形状符的卷积神经网络

P11 Experiments -- Classification & Retrieval

Q:MVCNN? SPH? LFD? 3D ShapeNets? FV?

P12 3D Shape Representations

Q: Voxel Grid? Pointcloud? Mesh? Surface?

A:下面详细讲啦

P13--17 3D Shape Representations: Depth Map

RGB image + Depth image = RGB-D Image (2.5D)

Q:H是Height ? W是Width?

可以使用全卷积神经网络进行深度图预测,得到两个估计的深度图,然后还可以得到每像素Loss
Per-Pixel Loss(L2 Distance)
Q:L2 距离是什么?
Problem: Scale / Depth Ambiguity

Q:具体是什么意思以及怎么解决?

A: 意思大概是单目图像中信息有限
Predicting Depth Maps

Scale invariant 尺度不变性

P18--26 3D Shape Representations: Surface Normals 曲面法线

对于每个像素,表面法线给出一个向量,表示该像素的世界上的对象的法向向量

假设 RGB Image为 3 x H x W,那么法线图 Normals: 3 x H x W
Predicting Normals

3D Shape Representations: Voxels

• Represent a shape with a V x V x V grid of occupancies 网格表示形状

• Just like segmentation masks in Mask R-CNN, but in 3D! 分割掩码

• (+) Conceptually simple: just a 3D grid! 只是一个3D网格

• (-) Need high spatial resolution to capture fine structures 需要高空间分辨率捕捉精细结构

• (-) Scaling to high resolutions is nontrivial ! 缩放到高分辨率并不容易

Processing Voxel Inputs: 3D Convolution

Generating Voxel Shapes: 3D Convolution

Voxel Problems: Memory Usage

Storing 1024(3次方) voxel grid takes 4GB of memory

Scaling Voxels: Oct-Trees 八叉树

Q: 没太看懂这个Oct-Trees

P27--34 3D Shape Representations: Point Cloud

• Represent shape as a set of P points in 3D space

• (+) Can represent fine structures without huge numbers of points

• ( ) Requires new architecture, losses, etc

• (-) Doesn't explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

提取网格为渲染或其他应用提取网格需要进行后处理

Proessing Pointcloud Inputs: PointNet

MLP ?

Max-Pool?

Generating Pointcloud Outputs

Predicting Point Clouds: Loss Function

P35--66 3D Shape Representations: Triangle Mesh

Predicting Meshes: Pixel2Mesh

Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh Network predicts offsets for each vertex Repeat.

Predicting Triangle Meshes: Graph Convolution

Problem: How to incorporate image features?

Predicting Triangle Meshes: Vertex-Aligned Features

Predicting Meshes: Loss Function

The same shape can be represented with different meshes -- how can we define a loss between predicted and ground-truth mesh?

**Idea:**Convert meshes to pointclouds, then compute loss

3D Shape Prediction: Mesh R-CNN

Mesh R-CNN: Hybrid 3D shape representation

未完待续

相关推荐
tzc_fly2 小时前
使用机器学习在单细胞水平识别肿瘤细胞
人工智能·机器学习
IT古董2 小时前
【漫话机器学习系列】021.类别特征(Categorical Feature)
人工智能·机器学习
湫ccc2 小时前
《机器学习》数据预处理简介
人工智能·机器学习
机器懒得学习2 小时前
打造智能化恶意软件检测桌面系统:从数据分析到一键报告生成
人工智能·python·算法·数据挖掘
szpc16213 小时前
100V宽压输入反激隔离电源,适用于N道沟MOSFET或GaN或5V栅极驱动器,无需光耦合
c语言·开发语言·人工智能·单片机·嵌入式硬件·生成对抗网络·fpga开发
weixin_543662863 小时前
伏羲0.13(文生图)
人工智能·深度学习
985小水博一枚呀3 小时前
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码
大数据·网络·人工智能·深度学习·神经网络·cnn
itwangyang5203 小时前
AIDD - 人工智能药物设计 -使用 Butina 模块对相似化合物进行聚类
人工智能·数据挖掘·聚类
Gui林4 小时前
RoboMIND:多体现基准 机器人操纵的智能规范数据
人工智能·ai·机器人
jionghan38554 小时前
理想的未来在AI——李想深度解析理想汽车的智能化之路
人工智能·汽车