分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

目录

    • [分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测](#分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测)

预测效果




基本介绍

MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测,优化参数为:学习率,批量处理大小,正则化参数。图很多,包括分类效果图,迭代优化图,混淆矩阵图。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测获取。
clike 复制代码
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关推荐
机器学习之心7 个月前
分类预测 | Matlab实现OOA-BP鱼鹰算法优化BP神经网络数据分类预测
分类预测·ooa-bp·鱼鹰算法优化bp神经网络
机器学习之心7 个月前
分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测
分类预测·最小二乘支持向量机·人工蜂群算法优化·abc-lssvm
机器学习之心8 个月前
分类预测 | Matlab基于GWO-RBF灰狼算法优化径向基神经网络的分类预测
分类预测·灰狼算法优化·gwo-rbf·径向基神经网络
机器学习之心8 个月前
分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测
分类预测·最小二乘支持向量机·kpca-issa-lssvm·核主成分分析·改进的麻雀搜索算法优化
随风飘摇的土木狗9 个月前
【MATLAB第96期】基于MATLAB的SVM(线性)、SVM(高斯)、决策树、KNN等机器学习算法回归及分类Boost集成学习模型(含不同模型权重)
机器学习·matlab·分类预测·集成学习·回归预测·boost·融合
随风飘摇的土木狗10 个月前
【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证
rnn·神经网络·分类预测·grnn·ffnn·cfnn·pnn
随风飘摇的土木狗10 个月前
【MATLAB第87期】#源码分享 | 基于MATLAB的增量神经系统网络SFAM多输入单输出多分类预测模型
matlab·分类预测·多输入单输出·多分类·多标签·sfam·fam
随风飘摇的土木狗10 个月前
【MATLAB第86期】基于matlab的Catboost多输入单输出分类预测模型 catboost-1.1.1版本
matlab·分类预测·多分类·多标签·catboost
机器学习之心1 年前
多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测
多变量时间序列预测·ssa-cnn-svm·麻雀算法优化·卷积神经网络-支持向量机
机器学习之心1 年前
分类预测 | Matlab实现OOA-CNN-SVM鱼鹰算法优化卷积支持向量机分类预测
分类预测·cnn-svm·鱼鹰算法优化·ooa-cnn-svm·卷积支持向量机