【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况

357行样本,12输入,1输出,4分类。

无交叉验证情况,默认70%训练,30%测试。

clike 复制代码
     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用

更改type类型即可自动筛选模型并运行。

clike 复制代码
switch type
  case 'NN'     ;
  case 'FFNN'   ; 
  case 'CFNN'   ; 
  case 'RNN'    ; 
  case 'GRNN'   ;
  case 'PNN'    ;
end

4.通用参数

Hidden_size = [10,10];%隐含层神经元

Max_epochs = 50; %最大训练次数

tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

二、级联前向神经网络 (CFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

三、广义回归神经网络 (GRNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

四、人工神经网络 (NN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

五、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

六、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

七、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"88期"以及相应指令,即可获取对应下载方式。

相关推荐
轻览月1 小时前
【DL】循环神经网络
人工智能·rnn·深度学习
轻览月2 小时前
【DL】复杂卷积神经网络Ⅱ
人工智能·神经网络·cnn
roman_日积跬步-终至千里2 小时前
【计算机视觉-作业1】图像分类:两层神经网络进一步提高分类精度
神经网络·计算机视觉·分类
LaughingZhu3 小时前
Product Hunt 每日热榜 | 2026-01-28
数据库·经验分享·神经网络·搜索引擎·chatgpt
渡我白衣3 小时前
从线性到非线性——神经网络的原理、训练与可解释性探索
开发语言·javascript·人工智能·深度学习·神经网络·机器学习·数字电路
劈星斩月15 小时前
神经网络之感知机(Perceptron)
神经网络·感知机·perceptron
陈天伟教授17 小时前
人工智能应用-机器视觉:AI 鉴伪 06.人脸控制技术
人工智能·神经网络·数码相机·生成对抗网络·dnn
小白勇闯网安圈19 小时前
神经网络的简单实现
人工智能·深度学习·神经网络
BHXDML20 小时前
基于卷积、循环神经网络身份证识别应用实验
人工智能·rnn·深度学习
LaughingZhu1 天前
Product Hunt 每日热榜 | 2026-01-27
大数据·人工智能·经验分享·神经网络·搜索引擎·产品运营