【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况

357行样本,12输入,1输出,4分类。

无交叉验证情况,默认70%训练,30%测试。

clike 复制代码
     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用

更改type类型即可自动筛选模型并运行。

clike 复制代码
switch type
  case 'NN'     ;
  case 'FFNN'   ; 
  case 'CFNN'   ; 
  case 'RNN'    ; 
  case 'GRNN'   ;
  case 'PNN'    ;
end

4.通用参数

Hidden_size = [10,10];%隐含层神经元

Max_epochs = 50; %最大训练次数

tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

二、级联前向神经网络 (CFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

三、广义回归神经网络 (GRNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

四、人工神经网络 (NN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

五、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

六、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

七、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"88期"以及相应指令,即可获取对应下载方式。

相关推荐
Francek Chen3 小时前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
妄想成为master15 小时前
快速入门深度学习系列(2)----损失函数、逻辑回归、向量化
人工智能·深度学习·神经网络
Jamence20 小时前
多模态大语言模型arxiv论文略读(六十九)
神经网络·语言模型·自然语言处理
鸿蒙布道师21 小时前
英伟达开源Llama-Nemotron系列模型:14万H100小时训练细节全解析
深度学习·神经网络·opencv·机器学习·自然语言处理·数据挖掘·llama
davysiao1 天前
数据智能重塑工业控制:神经网络在 MPC 中的四大落地范式与避坑指南
人工智能·深度学习·神经网络·工业控制
Mory_Herbert1 天前
5.1 神经网络: 层和块
人工智能·深度学习·神经网络
shadowtalon2 天前
基于CNN的猫狗图像分类系统
人工智能·深度学习·神经网络·机器学习·计算机视觉·分类·cnn
蹦蹦跳跳真可爱5892 天前
Python----神经网络(《Deep Residual Learning for Image Recognition》论文和ResNet网络结构)
人工智能·python·深度学习·神经网络
蹦蹦跳跳真可爱5892 天前
Python----神经网络(基于AlexNet的猫狗分类项目)
人工智能·pytorch·python·深度学习·神经网络·分类
奋斗者1号2 天前
神经网络之训练的艺术:反向传播与常见问题解决之道
人工智能·深度学习·神经网络