【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况

357行样本,12输入,1输出,4分类。

无交叉验证情况,默认70%训练,30%测试。

clike 复制代码
     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用

更改type类型即可自动筛选模型并运行。

clike 复制代码
switch type
  case 'NN'     ;
  case 'FFNN'   ; 
  case 'CFNN'   ; 
  case 'RNN'    ; 
  case 'GRNN'   ;
  case 'PNN'    ;
end

4.通用参数

Hidden_size = [10,10];%隐含层神经元

Max_epochs = 50; %最大训练次数

tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

二、级联前向神经网络 (CFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

三、广义回归神经网络 (GRNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

四、人工神经网络 (NN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

五、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

六、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

七、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"88期"以及相应指令,即可获取对应下载方式。

相关推荐
池央9 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
跟德姆(dom)一起学AI12 小时前
0基础跟德姆(dom)一起学AI 自然语言处理18-解码器部分实现
人工智能·python·rnn·深度学习·自然语言处理·transformer
Francek Chen14 小时前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
QQ_77813297418 小时前
Pix2Pix:图像到图像转换的条件生成对抗网络深度解析
人工智能·神经网络
是Dream呀21 小时前
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
python·神经网络·迁移学习
盼小辉丶1 天前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
羊小猪~~1 天前
深度学习基础--LSTM学习笔记(李沐《动手学习深度学习》)
人工智能·rnn·深度学习·学习·机器学习·gru·lstm
我是聪明的懒大王懒洋洋1 天前
dl学习笔记:(7)完整神经网络流程
笔记·神经网络·学习
池央2 天前
GAN - 生成对抗网络:生成新的数据样本
人工智能·神经网络·生成对抗网络