【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况

357行样本,12输入,1输出,4分类。

无交叉验证情况,默认70%训练,30%测试。

clike 复制代码
     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用

更改type类型即可自动筛选模型并运行。

clike 复制代码
switch type
  case 'NN'     ;
  case 'FFNN'   ; 
  case 'CFNN'   ; 
  case 'RNN'    ; 
  case 'GRNN'   ;
  case 'PNN'    ;
end

4.通用参数

Hidden_size = [10,10];%隐含层神经元

Max_epochs = 50; %最大训练次数

tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

二、级联前向神经网络 (CFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

三、广义回归神经网络 (GRNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

四、人工神经网络 (NN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

五、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

六、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

七、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"88期"以及相应指令,即可获取对应下载方式。

相关推荐
mit6.82411 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
AI波克布林16 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Re_draw_debubu1 天前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
重启的码农1 天前
ggml 介绍(5) GGUF 上下文 (gguf_context)
c++·人工智能·神经网络
楚韵天工1 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
老艾的AI世界2 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
khystal3 天前
ISTA为什么要加上软阈值激活函数?r若没有L1 正则化也要加其他激活函数吗?
神经网络·信号处理
重启的码农3 天前
ggml介绍 (2) 量化 (Quantization)
人工智能·神经网络
重启的码农3 天前
ggml介绍 (1) 张量 (ggml_tensor)
神经网络
失散133 天前
深度学习——03 神经网络(4)-正则化方法&价格分类案例
深度学习·神经网络·正则化