【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况

357行样本,12输入,1输出,4分类。

无交叉验证情况,默认70%训练,30%测试。

clike 复制代码
     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用

更改type类型即可自动筛选模型并运行。

clike 复制代码
switch type
  case 'NN'     ;
  case 'FFNN'   ; 
  case 'CFNN'   ; 
  case 'RNN'    ; 
  case 'GRNN'   ;
  case 'PNN'    ;
end

4.通用参数

Hidden_size = [10,10];%隐含层神经元

Max_epochs = 50; %最大训练次数

tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

二、级联前向神经网络 (CFNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

三、广义回归神经网络 (GRNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

四、人工神经网络 (NN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

五、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

六、循环神经网络 (RNN)

1、无交叉验证

clike 复制代码
tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

2、有交叉验证(3折为例)

clike 复制代码
tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

七、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"88期"以及相应指令,即可获取对应下载方式。

相关推荐
xiaohanbao097 小时前
Transformer架构与NLP词表示演进
python·深度学习·神经网络
fyakm9 小时前
GAN入门:生成器与判别器原理(附Python代码)
rnn·深度学习·神经网络
fyakm12 小时前
RNN的注意力机制:原理与实现(代码示例)
rnn·深度学习·神经网络
Learn Beyond Limits19 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT33319 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发19 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn
可触的未来,发芽的智生20 小时前
触摸未来2025.10.06:声之密语从生理构造到神经网络的声音智能革命
人工智能·python·神经网络·机器学习·架构
无风听海20 小时前
神经网络之为什么回归任务的输出是高斯分布的均值
神经网络·均值算法·回归
qq_340474021 天前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
MYX_3091 天前
第三章 神经网络
人工智能·深度学习·神经网络