flink cdc初始全量速度很慢原因和优化点

  • link cdc初始全量速度很慢的原因之一是,它需要先读取所有的数据,然后再写入到目标端,这样可以保证数据的一致性和顺序。但是这样也会导致数据的延迟和资源的浪费。
  • flink cdc初始全量速度很慢的原因之二是,它使用了Debezium作为捕获数据变化的引擎,而Debezium在读取数据时,会使用全局锁或者快照隔离级别,这样会影响源端数据库的性能和并发能力。
  • flink cdc初始全量速度很慢的优化点之一是,使用并行读取的方式,将源端数据库的表分成多个分区,然后使用多个任务同时读取不同的分区,这样可以提高读取速度和吞吐量。
  • flink cdc初始全量速度很慢的优化点之二是,使用增量检查点的方式,将读取到的数据在内存中进行增量备份,然后定期写入到目标端,这样可以减少写入次数和延迟,并且在故障恢复时,可以从检查点恢复数据,而不需要重新读取所有的数据。
  • flink cdc初始全量速度很慢的优化点之三是,调整flink cdc和flink的相关参数和选项,如设置合理的并行度、任务槽、检查点间隔、缓冲区大小、网络超时等,以适应不同的场景和需求。
相关推荐
PcVue China2 小时前
PcVue + SQL Grid : 释放数据的无限潜力
大数据·服务器·数据库·sql·科技·安全·oracle
Mephisto.java4 小时前
【大数据学习 | HBASE】hbase的读数据流程与hbase读取数据
大数据·学习·hbase
SafePloy安策7 小时前
ES信息防泄漏:策略与实践
大数据·elasticsearch·开源
学术搬运工7 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
Matrix708 小时前
HBase理论_背景特点及数据单元及与Hive对比
大数据·数据库·hbase
B站计算机毕业设计超人9 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
好记性+烂笔头10 小时前
Flink_DataStreamAPI_输出算子Sink
flink
Carl_奕然10 小时前
【大数据算法】MapReduce算法概述之:MapReduce基础模型
大数据·算法·mapreduce
Elastic 中国社区官方博客10 小时前
Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
飞翔的佩奇11 小时前
ElasticSearch:使用dsl语句同时查询出最近2小时、最近1天、最近7天、最近30天的数量
大数据·elasticsearch·搜索引擎·dsl