线性代数(五) 线性空间

前言

线性代数(三) 线性方程组&向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解

空间是什么

大家较熟悉的:平面直角坐标系是最常见的二维空间

空间由无穷多个坐标点组成

每个坐标点就是一个向量

  • 反过来,也可说:2维空间,是由无穷多个2维向量构成
  • 同样的,在3维空间中,每个3维坐标点就是一个3维向量
  • 那么同理:3维空间中有无穷多个3维向量,或3维空间由无穷多个3维向量构成

空间中所有向量,都可被表示成 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 的线性组合,若有一向量记为: a ⃗ \vec{a} a
a ⃗ = k 1 ⋅ e 1 ⃗ + k 2 ⋅ e 2 ⃗ + . . . + k n ⋅ e n ⃗ , k 1 , k 2 , . . . , k n 有解即可 \vec{a}=k_{1}·\vec{e_{1}}+k_{2}·\vec{e_{2}}+...+k_{n}·\vec{e_{n}} , k_{1},k_{2},...,k_{n}有解即可 a =k1⋅e1 +k2⋅e2 +...+kn⋅en ,k1,k2,...,kn有解即可

则称:这些向量 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 为这个空间基

线性空间定义及性质



向量相加


[ x 1 y 1 ] + [ x 2 y 2 ] = [ x 1 + x 2 y 1 + y 2 ] = [ 2 + 3 4 + 1 ] \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1+ y_2 \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 4+ 1 \end{bmatrix} [x1y1]+[x2y2]=[x1+x2y1+y2]=[2+34+1]

数与向量乘法


[ x y ] ∗ 2 = [ 2 x 2 y ] \begin{bmatrix} x \\ y \end{bmatrix} * 2 = \begin{bmatrix} 2x \\ 2y \end{bmatrix} [xy]∗2=[2x2y]

维数,坐标和基

这里出现了一个线性无关的概念,这里线性无关的概念和向量空间中的线性无关差不多,但向量的范围变广了。

  1. n维线性空间V的基不是唯一的。V中的任意n个线性无关向量都是V的一组基
  2. 向量 a ⃗ \vec{a} a 的坐标 ( a 1 , a 2 , . . . a n ) (a_1,a_2,...a_n) (a1,a2,...an)在 ( ε 1 , ε 2 , . . . ε n ) (\varepsilon_1,\varepsilon_2,...\varepsilon_n) (ε1,ε2,...εn)基下,是唯一且确定的
要怎么确定线性空间的维数与基

欧几里得空间

欧几里得空间是空间中的一种类型,是一种特殊的集合。欧几里得集合中的元素:有序实数元组

例:(2,3)(2,4)(3,4)(3,5)为有序实数2元组

  • 有序是指:如(2,3)和(3,2)是两个不同的元素
  • 也就是:每个元素内的实数是讲顺序的
  • 实数是指:每个元素内的数字都∈R
  • 元组是指:每个元素有有序几个数字构成
  • 如:2个数字构成=2元组,n个数字构成=n元组

欧几里得集合=有序实数元组=n维坐标点的集合

所以,欧几里得空间就是我们从小到大进场使用的那个空间

欧几里得空间符合空间的8大定理

子空间

子空间,是整个空间的一部分。但它也是空间,必须满足向量空间的定义。

子空间的交集

子空间的和

子空间的 V 1 , V 2 V_1,V_2 V1,V2的并集,并不是简单的元素相加,造成"子空间的并集不属于子空间"。

所以定义子空间的和

子空间的直和

子空间直和是特殊的和。基要求各子空间互相独立。

可以把整个线性空间看成一个大蛋糕。

  • 直和分解就是把蛋糕切成小块的,每一小块蛋糕都是一个子空间,所有小蛋糕之间没有交集,且它们能拼成整个蛋糕。
  • 子空间的和就是分蛋糕的时候没切好,小蛋糕拼不成整个蛋糕(子空间之间的交集非空).

内积空间

在之前的内容中,我们抽象的介绍了向量,矩阵以及线性空间线性变换等。但是在几何中,向量还有向量的模,向量的内积运算等。为了引入向量的模,向量的内积等运算,我们引入了"内积定义"。即内积空间=线性空间+内积定义。

向量的夹角


cos ⁡ θ = cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) = x 1 x 1 2 + y 1 2 ∗ x 2 x 2 2 + y 2 2 + y 1 x 1 2 + y 1 2 ∗ y 2 x 2 2 + y 2 2 \cos\theta = \cos(\alpha-\beta) =\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)=\cfrac{x_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{x_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} + \cfrac{y_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} cosθ=cos(α−β)=cos(α)cos(β)+sin(α)sin(β)=x12+y12 x1∗x22+y22 x2+x12+y12 y1∗x22+y22 y2
cos ⁡ θ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 = a ⃗ ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta = \cfrac{x_1x_2+y_1y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1}}\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2}}} = \cfrac{\vec{a} *\vec{b}}{|\vec{a} ||\vec{b}|} cosθ=x12+y12 x22+y22 x1x2+y1y2=∣a ∣∣b ∣a ∗b

上述的a,b向量,只是在2维坐标系中,如果将坐标系转为n维度,即向量a为(x1,x2,x3...xn)向量b为(y1,y2,y3...yn)
cos ⁡ θ = ∑ i = 1 n ( x i ∗ y i ) ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 = [ a , b ] [ a , a ] [ b , b ] \cos\theta = \cfrac{\sum_{i=1}^n(x_i*y_i)}{\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{x_i}}\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{y_i}}}=\cfrac{[a,b]}{\sqrt{[a,a]}\sqrt{[b,b]}} cosθ=∑i=1nxi2 ∑i=1nyi2 ∑i=1n(xi∗yi)=[a,a] [b,b] [a,b]

两个向量的夹角 θ \theta θ=90°,即两个向量正交.

两个向量相互正交,把这2个向量合为一组向量,就叫正交向量组

正交基

如果 ∣ e n ∣ = 1 |e_n|=1 ∣en∣=1,则称为标准正交基

施密特(Schmidt)求解正交基

通过简单的投影方式,可以找到一基的正交基

已知一组基{KaTeX parse error: Expected 'EOF', got '}' at position 18: ...lpha_1,\alpha_2}̲求其正交基组

  1. 令 β 1 = α 1 \beta_1=\alpha_1 β1=α1
  2. 得 β 1 \beta_1 β1的上的单位基为 β 1 [ β 1 , β 1 ] \cfrac{\beta_1}{\sqrt{[\beta_1,\beta_1]}} [β1,β1] β1
  3. 计算 α 1 \alpha_1 α1在 β 1 \beta_1 β1上的投影
  4. 计算投影长度, [ α 2 , β 1 ] [ α 2 , α 2 ] [ β 1 , β 1 ] ∗ [ α 2 , α 2 ] \cfrac{[\alpha_2,\beta_1]}{\sqrt{[\alpha_2,\alpha_2]}\sqrt{[\beta_1,\beta_1]}} *\sqrt{[\alpha_2,\alpha_2]} [α2,α2] [β1,β1] [α2,β1]∗[α2,α2]
  5. 投影为长度* β 1 \beta_1 β1的上的单位基 [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 [β1,β1][α2,β1]∗β1
  6. 得正交基为 α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2−[β1,β1][α2,β1]∗β1
  7. 正交基组为{ α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 , [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1,\cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2−[β1,β1][α2,β1]∗β1,[β1,β1][α2,β1]∗β1}

如果是三维的话

正交补

定义: 设 U U U是 V V V的子空间,则 U ⊥ = { v ∈ V : ∀ u ∈ U < v , u > = 0 } U^\perp =\{v\in V : \forall u\in U \left< v,u\right> =0 \} U⊥={v∈V:∀u∈U⟨v,u⟩=0}称之为 U U U的正交补. ∀ u \forall u ∀u表示集合中所有u的意思

  1. U ⊥ U^\perp U⊥是 V V V的子空间;
  2. V ⊥ = { 0 } V^\perp=\{0\} V⊥={0}且 { 0 } ⊥ = V \{0\}^\perp=V {0}⊥=V
  3. U ⊥ ∩ U = { 0 } U^\perp \cap U = \{0\} U⊥∩U={0};
  4. 如果 U , W U,W U,W都是 V V V的子集,且 U ⊆ W U\sube W U⊆W ,则 W ⊥ ⊆ U ⊥ W^\perp \sube U^\perp W⊥⊆U⊥

定理: 有限维子空间的正交分解: V = U ⊕ U ⊥ V= U \oplus U^\perp V=U⊕U⊥

  1. ( U ⊥ ) ⊥ = U (U^\perp)^\perp=U (U⊥)⊥=U
  2. dim ⁡ V = dim ⁡ U + dim ⁡ U ⊥ \dim V = \dim U + \dim U^\perp dimV=dimU+dimU⊥

如何求解正交补的基?

  1. 假设 d i m V = 3 , d i m U = 2 且基组为 [ { 1 , 0 , 0 } , { 0 , 1 , 0 } ] dim V = 3 , dim U = 2 且基组为[\{1,0,0\},\{0,1,0\}] dimV=3,dimU=2且基组为[{1,0,0},{0,1,0}]
  2. 得矩阵 A = [ 1 0 0 0 1 0 0 0 0 ] A=\begin{bmatrix} 1 &0&0 \\ 0&1&0 \\ 0&0&0 \end{bmatrix} A= 100010000
  3. 假设 U ⊥ U^\perp U⊥的基组 x ⃗ = [ x y z ] \vec{x}=\begin{bmatrix} x\\ y\\ z \end{bmatrix} x = xyz
  4. 得 A x = 0 Ax=0 Ax=0齐次方程组,你通解为{0,0,1}

正交补的基就是方程组的解,解数=dim V - R(A)

主要参考

欧几里得空间是向量空间

生成空间是什么

子空间的交与和

3.10子空间的运算

正交基与标准正交基

如何理解施密特(Schmidt)正交化

正交补 (orthogonal complements)

相关推荐
MarkHD7 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
星沁城11 小时前
240. 搜索二维矩阵 II
java·线性代数·算法·leetcode·矩阵
君臣Andy2 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
勤劳的进取家2 天前
利用矩阵函数的导数公式求解一阶常系数微分方程组的解
线性代数
sz66cm3 天前
数学基础 -- 线性代数之线性无关
人工智能·线性代数·机器学习
herobrineAC3 天前
线代的几何意义(一)——向量,坐标,矩阵
线性代数·矩阵
Ricciflows3 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
余~185381628003 天前
矩阵NFC碰一碰发视频源码开发技术解析,支持OEM
大数据·人工智能·线性代数·矩阵·音视频
羞儿4 天前
构建旋转变换矩阵对二维到高维空间的线段点进行旋转
图像处理·人工智能·线性代数·矩阵
羊羊20354 天前
线性代数:Matrix2x2和Matrix3x3
线性代数·数学建模·unity3d