深度学习调参技巧

写完代码---> 小数据上降loss无nan---> 大数据没爆卡速度可以---> 实验log完好可视化loss稳步下降--->回头看实验结果

  • 写完代码后,不要只是在小数据上降loss无nan,还要检查一下模型的输出是否符合预期,比如是否有明显的偏差或者异常值。
  • 大数据 没爆卡速度可以是一个好的指标,但是也要注意模型的泛化能力,比如是否有过拟合或者欠拟合 的现象。你可以使用交叉验证或者早停法来避免过拟合,或者增加模型的复杂度或者数据的多样性来避免欠拟合。
  • 实验log完好可视化loss稳步下降是一个好的习惯,但是也要关注一下其他的评价指标,比如准确率、召回率、F1值等。这些指标可以反映模型在不同方面的性能,比如是否有偏向于某一类别或者某一样本的问题。

关于欠拟合:

欠拟合的现象是指模型在训练集和测试集上都表现不好,即模型的拟合能力不足,无法捕捉数据的真实规律。欠拟合的原因可能有以下几种:

  • 模型的复杂度太低,比如使用线性模型来拟合非线性数据,或者使用过少的神经元或者隐藏层来构建深度学习模型。
  • 数据的质量或者数量不够,比如数据存在噪声、缺失值、异常值等,或者数据的分布不均匀、不具有代表性等。
  • 训练的时间或者次数不够,比如使用过小的学习率或者过大的批次大小来进行梯度下降,或者使用过早的停止条件来终止训练。

欠拟合的现象可以通过以下几种方法来解决:

  • 增加模型的复杂度,比如使用非线性模型来拟合非线性数据,或者使用更多的神经元或者隐藏层来构建深度学习模型。
  • 提高数据的质量或者数量,比如对数据进行清洗、填补、标准化等预处理操作,或者使用数据增强、生成对抗网络等技术来扩充数据集。
  • 延长训练的时间或者次数,比如使用合适的学习率或者批次大小来进行梯度下降,或者使用交叉验证、学习曲线等方法来确定最佳的停止条件。
相关推荐
过尽漉雪千山8 分钟前
Anaconda的虚拟环境下使用清华源镜像安装Pytorch
人工智能·pytorch·python·深度学习·机器学习
jarreyer9 分钟前
AB测试相关知识
人工智能·机器学习·ab测试
碧海银沙音频科技研究院9 分钟前
CLIP(对比语言-图像预训练)在长尾图像分类应用
python·深度学习·分类
七宝大爷14 分钟前
Transformer推理优化:KV缓存机制详解
深度学习·缓存·transformer
AiTop10015 分钟前
微软VibeVoice-Realtime-0.5B正式上线:实时语音,快到“话未说完音已先到”!
人工智能·语音识别
ZKNOW甄知科技16 分钟前
AI-ITSM的时代正在到来:深度解读Gartner最新报告
大数据·运维·人工智能·低代码·网络安全·微服务·重构
zhaodiandiandian17 分钟前
AI 重塑就业生态:变革浪潮中的挑战与治理之道
人工智能
xinyuan_12345618 分钟前
数智化招采平台实战指南:AI如何让采购管理实现效率与价值落地
大数据·人工智能
爱写代码的小朋友18 分钟前
人工智能驱动的教育研究范式转型:从假设驱动到数据驱动的方法论创新
人工智能
Tezign_space18 分钟前
技术实战:Crocs如何构建AI驱动的智能内容矩阵,实现内容播放量提升470%?
大数据·人工智能·矩阵·aigc·内容运营·多智能体系统·智能内容矩阵