深度学习调参技巧

写完代码---> 小数据上降loss无nan---> 大数据没爆卡速度可以---> 实验log完好可视化loss稳步下降--->回头看实验结果

  • 写完代码后,不要只是在小数据上降loss无nan,还要检查一下模型的输出是否符合预期,比如是否有明显的偏差或者异常值。
  • 大数据 没爆卡速度可以是一个好的指标,但是也要注意模型的泛化能力,比如是否有过拟合或者欠拟合 的现象。你可以使用交叉验证或者早停法来避免过拟合,或者增加模型的复杂度或者数据的多样性来避免欠拟合。
  • 实验log完好可视化loss稳步下降是一个好的习惯,但是也要关注一下其他的评价指标,比如准确率、召回率、F1值等。这些指标可以反映模型在不同方面的性能,比如是否有偏向于某一类别或者某一样本的问题。

关于欠拟合:

欠拟合的现象是指模型在训练集和测试集上都表现不好,即模型的拟合能力不足,无法捕捉数据的真实规律。欠拟合的原因可能有以下几种:

  • 模型的复杂度太低,比如使用线性模型来拟合非线性数据,或者使用过少的神经元或者隐藏层来构建深度学习模型。
  • 数据的质量或者数量不够,比如数据存在噪声、缺失值、异常值等,或者数据的分布不均匀、不具有代表性等。
  • 训练的时间或者次数不够,比如使用过小的学习率或者过大的批次大小来进行梯度下降,或者使用过早的停止条件来终止训练。

欠拟合的现象可以通过以下几种方法来解决:

  • 增加模型的复杂度,比如使用非线性模型来拟合非线性数据,或者使用更多的神经元或者隐藏层来构建深度学习模型。
  • 提高数据的质量或者数量,比如对数据进行清洗、填补、标准化等预处理操作,或者使用数据增强、生成对抗网络等技术来扩充数据集。
  • 延长训练的时间或者次数,比如使用合适的学习率或者批次大小来进行梯度下降,或者使用交叉验证、学习曲线等方法来确定最佳的停止条件。
相关推荐
光电大美美-见合八方中国芯22 分钟前
【平面波导外腔激光器专题系列】1064nm单纵模平面波导外腔激光器‌
网络·数据库·人工智能·算法·平面·性能优化
__Benco27 分钟前
OpenHarmony平台驱动开发(十),MMC
人工智能·驱动开发·harmonyos
羊小猪~~43 分钟前
深度学习基础--目标检测常见算法简介(R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、SSD、YOLO)
人工智能·深度学习·算法·yolo·目标检测·机器学习·cnn
虚谷231 小时前
AI时代企业应用系统架构的新思路与CIO变革指南
人工智能·系统架构
Feng.Lee1 小时前
聊一聊接口的压力测试如何进行的?
人工智能·功能测试·压力测试·可用性测试
灬0灬灬0灬1 小时前
深度学习 ———— 迁移学习
人工智能·深度学习·迁移学习
Blossom.1181 小时前
使用Python和TensorFlow实现图像分类的人工智能应用
开发语言·人工智能·python·深度学习·安全·机器学习·tensorflow
小白聊AI1 小时前
什么是AI写作
人工智能·学习·ai写作
SlackMoon1 小时前
如何删除豆包本地大模型
人工智能
陈奕昆1 小时前
4.2【LLaMA-Factory实战】金融财报分析系统:从数据到部署的全流程实践
人工智能·金融·llama·大模型微调