深度学习调参技巧

写完代码---> 小数据上降loss无nan---> 大数据没爆卡速度可以---> 实验log完好可视化loss稳步下降--->回头看实验结果

  • 写完代码后,不要只是在小数据上降loss无nan,还要检查一下模型的输出是否符合预期,比如是否有明显的偏差或者异常值。
  • 大数据 没爆卡速度可以是一个好的指标,但是也要注意模型的泛化能力,比如是否有过拟合或者欠拟合 的现象。你可以使用交叉验证或者早停法来避免过拟合,或者增加模型的复杂度或者数据的多样性来避免欠拟合。
  • 实验log完好可视化loss稳步下降是一个好的习惯,但是也要关注一下其他的评价指标,比如准确率、召回率、F1值等。这些指标可以反映模型在不同方面的性能,比如是否有偏向于某一类别或者某一样本的问题。

关于欠拟合:

欠拟合的现象是指模型在训练集和测试集上都表现不好,即模型的拟合能力不足,无法捕捉数据的真实规律。欠拟合的原因可能有以下几种:

  • 模型的复杂度太低,比如使用线性模型来拟合非线性数据,或者使用过少的神经元或者隐藏层来构建深度学习模型。
  • 数据的质量或者数量不够,比如数据存在噪声、缺失值、异常值等,或者数据的分布不均匀、不具有代表性等。
  • 训练的时间或者次数不够,比如使用过小的学习率或者过大的批次大小来进行梯度下降,或者使用过早的停止条件来终止训练。

欠拟合的现象可以通过以下几种方法来解决:

  • 增加模型的复杂度,比如使用非线性模型来拟合非线性数据,或者使用更多的神经元或者隐藏层来构建深度学习模型。
  • 提高数据的质量或者数量,比如对数据进行清洗、填补、标准化等预处理操作,或者使用数据增强、生成对抗网络等技术来扩充数据集。
  • 延长训练的时间或者次数,比如使用合适的学习率或者批次大小来进行梯度下降,或者使用交叉验证、学习曲线等方法来确定最佳的停止条件。
相关推荐
User_芊芊君子3 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱6 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
机器视觉的发动机12 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
铁蛋AI编程实战15 分钟前
通义千问 3.5 Turbo GGUF 量化版本地部署教程:4G 显存即可运行,数据永不泄露
java·人工智能·python
HyperAI超神经20 分钟前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
JoySSLLian33 分钟前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC34 分钟前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
空白诗34 分钟前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
模型时代41 分钟前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶44 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能