Python计算加速利器

迷途小书童的 Note

读完需要

6
分钟

速读仅需 2 分钟

1

简介

Python 是一门应用非常广泛的高级语言,但是,长久以来,Python的运行速度一直被人诟病,相比 c/c++、java、c#、javascript 等一众高级编程语言,完全没有优势。

那么真的没有办法提升 Python 程序的运行速度吗?相信看完本文,你应该会有答案。

2

示例

这里以找出 1000000 以内的质数为例,分别计算下需要花费多长的时间?

首先来回顾下什么是质数?

质数(Prime number),又称素数,指在大于 1 的自然数中,除了 1 和该数本身外,无法被其他自然数整除(也可定义为只有 1 与该数本身两个因数)。举个例子,比如说数字 7,从 2 开始一直到 6,都不能被它整除,只有 1 和它本身 7 才能被 7 整除,所以 7 就是一个质数。

下面来看看 python 的代码实现

javascript 复制代码
import math
import time




def is_prime(num):
    if num == 2:
        return True
        
    if num <= 1 or not num % 2:
        return False


    # 从3开始,到int(根号num)+1,步长是2,如3,5,7 ...
    for i in range(3, int(math.sqrt(num)) + 1, 2):
        if not num % i:
            return False


    return True




def run_program(N):
    for i in range(N):
        is_prime(i)




if __name__ == '__main__':
    N = 1000000
    start = time.time()
    run_program(N)
    end = time.time()
    print(end - start)

执行代码,可以看到在我的老旧 i5 机器上总共花费了 5 秒多

3

改进

大家都知道解释型语言,解释器不产生目标机器代码,而是产生中间代码,解释器通常会导致执行效率较低。

因此,问题就变成了,能不能将 python 代码翻译成机器码?那执行效率肯定就会大大提升了

numba 就是这么一款工具,它是 python 的即时编译器(just-in-time compiler),它使用 LLVM 将 python 代码翻译成机器码,特别是在使用 numpy 数组以及循环操作上,效果最佳。

numba 的使用比较简单,我们不需要更换 python 的解释器,只需要将 numba 的装饰器写在 python 方法上,当这个带有 numba 装饰器的方法被调用时,就会被 just-in-time 即时编译为机器代码,然后执行。目前 numba 支持在 X86、ARM 等多种架构上进行动态编译。

使用 numba 之前,我们需要安装这个库

javascript 复制代码
pip install numba


或者
conda install numba

下面来看看 numba 版本的质数问题

javascript 复制代码
import math
import time
from numba import njit




@njit(fastmath=True, cache=True)
def is_prime(num):
    if num == 2:
        return True
    if num <= 1 or not num % 2:
        return False


    for i in range(3, int(math.sqrt(num)) + 1, 2):
        if not num % i:
            return False
    return True




@njit(fastmath=True, cache=True)
def run_program(N):
    for i in range(N):
        is_prime(i)




if __name__ == '__main__':
    N = 10000000
    start = time.time()
    run_program(N)
    end = time.time()
    print(end - start)

执行上述代码,可以看到,速度提升了 4 倍左右,不到 1 秒,效果还是非常明显

最后,作为横向比较,我们使用 c++ 语言,也写一个类似的程序

javascript 复制代码
#include <iostream>
#include <cmath>
#include <time.h>


using namespace std;


bool isPrime(int num)
{
    if (num == 2) 
        return true;
    if (num <= 1 || num % 2 == 0) 
        return false;
    double sqrt_num = sqrt(double(num));
    for (int i = 3; i <= sqrt_num; i += 2) {
        if (num % i == 0) 
            return false;
    }
    return true;
}


int main()
{
    int N = 1000000;
    clock_t start, end;
    start = clock();
    for (int i=0; i < N; i++) 
        isPrime(i);
    end = clock();
    cout << (end - start) / ((double)CLOCKS_PER_SEC);
    return 0;
}

编译后执行,可以看到,只花了 0.4 秒

4

小结

从上面的对比示例中可以看到,使用了 just-in-time compiler 后(numba、pypy 都是类似的实现),代码的执行效率已经直逼 C++ 等编译型语言了。

5

参考资料

6

免费社群

相关推荐
小李独爱秋11 分钟前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模
TwoAI20 分钟前
Matplotlib:绘制你的第一张折线图与散点图
python·matplotlib
rockmelodies24 分钟前
【PHP7内核剖析】-1.1 PHP概述
开发语言·php
又菜又爱玩呜呜呜~35 分钟前
go使用反射获取http.Request参数到结构体
开发语言·http·golang
摸鱼仙人~40 分钟前
一文详解 Python 密码哈希库 Passlib
开发语言·python·哈希算法
小伟童鞋1 小时前
c++中导出函数调用约定为__stdcall类型函数并指定导出函数名称
开发语言·c++
维C泡泡1 小时前
C++初认、命名规则、输入输出、函数重载、引用+coust引用
开发语言·c++
a7360151 小时前
二十二、包管理与发布 (Cargo 进阶)
开发语言·rust
大飞记Python1 小时前
当GitHub不再纯粹:Python自动化测试的未来是AI还是危机?
python·github