python实现梅尔频率倒谱系数(MFCC) 除了傅里叶变换和离散余弦变换

语音识别第4讲:语音特征参数MFCC https://zhuanlan.zhihu.com/p/88625876/

Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

python 复制代码
#梅尔频率倒谱系数(MFCC)的原理讲解及python实现
# https://www.cnblogs.com/LXP-Never/p/10918590.html


import numpy
import numpy as np
import scipy.io.wavfile
from scipy.fftpack import dct

sample_rate, signal = scipy.io.wavfile.read(r'H:\p227_003.wav')
signal = signal[0:int(3.5 * sample_rate)]  # 我们只取前3.5s
pre_emphasis = 0.97

#1、预加重 (Pre-Emphasis)
emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])

frame_size = 0.025
frame_stride = 0.01
overlap=0.015

#2、分帧 (Framing)
frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate  # 从秒转换为采样点
signal_length = len(emphasized_signal)
frame_length = int(round(frame_length))
frame_step = int(round(frame_step))
# 确保我们至少有1帧
num_frames = int(numpy.ceil(float(numpy.abs(signal_length - frame_length)) / frame_step)) + 1  #原文这里错了
pad_signal_length = (num_frames-1) * frame_step + frame_length  #原文这里错了

z = numpy.zeros((pad_signal_length - signal_length))
# 填充信号,确保所有帧的采样数相等,而不从原始信号中截断任何采样
pad_signal = numpy.append(emphasized_signal, z)


indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) + numpy.tile(numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T
frames = pad_signal[indices.astype(numpy.int32, copy=False)]


#3、加窗 (Window)
frames *= numpy.hamming(frame_length)
# frames *= 0.54 - 0.46 * numpy.cos(( numpy.pi * n ) / (frame_length - 1))  # 内部实现

NFFT=512
# 二、FFT (Fourier-Transform)
mag_frames = numpy.absolute(numpy.fft.rfft(frames, NFFT))   # fft的幅度(magnitude)

# 三、功率谱 (Power Spectrum)
pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2))  # 功率谱


# 四、滤波器组 (Filter Banks)
nfilt = 40
low_freq_mel = 0
high_freq_mel = (2595 * np.log10(1 + (sample_rate / 2) / 700))  # 求最高hz频率对应的mel频率
# 我们要做40个滤波器组,为此需要42个点,这意味着在们需要low_freq_mel和high_freq_mel之间线性间隔40个点
mel_points = np.linspace(low_freq_mel, high_freq_mel, nfilt + 2)  # 在mel频率上均分成42个点
hz_points = (700 * (10 ** (mel_points / 2595) - 1))  # 将mel频率再转到hz频率
# bin = sample_rate/2 / NFFT/2=sample_rate/NFFT    # 每个频点的频率数
# bins = hz_points/bin=hz_points*NFFT/ sample_rate    # hz_points对应第几个fft频点
bins = np.floor((NFFT + 1) * hz_points / sample_rate)

fbank = np.zeros((nfilt, int(np.floor(NFFT / 2 + 1))))
for m in range(1, nfilt + 1):
    f_m_minus = int(bins[m - 1])  # 左
    f_m = int(bins[m])  # 中
    f_m_plus = int(bins[m + 1])  # 右

    for k in range(f_m_minus, f_m):
        fbank[m - 1, k] = (k - bins[m - 1]) / (bins[m] - bins[m - 1])
    for k in range(f_m, f_m_plus):
        fbank[m - 1, k] = (bins[m + 1] - k) / (bins[m + 1] - bins[m])
filter_banks = np.dot(pow_frames, fbank.T)
filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks)  # 数值稳定性
filter_banks = 20 * np.log10(filter_banks)  # dB

#五、梅尔频率倒谱系数(MFCCs)
num_ceps = 12
mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)] # 保持在2-13

cep_lifter =22
(nframes, ncoeff) = mfcc.shape
n = numpy.arange(ncoeff)
lift = 1 + (cep_lifter / 2) * numpy.sin(numpy.pi * n / cep_lifter)
mfcc *= lift

# 六、均值归一化(Mean Normalization)
filter_banks -= (numpy.mean(filter_banks, axis=0) + 1e-8)
mfcc -= (numpy.mean(mfcc, axis=0) + 1e-8)
相关推荐
念念010726 分钟前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
四维碎片31 分钟前
【Qt】线程池与全局信号实现异步协作
开发语言·qt·ui·visual studio
IT码农-爱吃辣条39 分钟前
Three.js 初级教程大全
开发语言·javascript·three.js
云天徽上1 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
染翰1 小时前
lua入门以及在Redis中的应用
开发语言·redis·lua
王者鳜錸2 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化
兔老大RabbitMQ2 小时前
git pull origin master失败
java·开发语言·git
tt5555555555552 小时前
C/C++嵌入式笔试核心考点精解
c语言·开发语言·c++