matplotlib实战--雷达图

雷达图(Radar Chart),也被称为蛛网图或星型图,是一种用于可视化多个变量之间关系的图表形式。

雷达图是一种显示多变量数据的图形方法。通常从同一中心点开始等角度间隔地射出三个以上的轴,每个轴代表一个定量变量,各轴上的点依次连接成线或几何图形。

雷达图可以用来在变量间进行对比,或者查看变量中有没有异常值。

雷达图中每个轴的相对位置和角度通常是无信息的。每个变量都具有自己的轴,彼此间的距离相等,所有轴都有相同的刻度。

在将数据映射到这些轴上时,需要注意预先对数值进行标准化处理,保证各个轴之间的数值比例能够做同级别的比较。

1. 主要元素

雷达图的主要元素包括:

  1. 坐标轴:每个变量对应一个射线或轴线,从中心点向外延伸。射线的长度或角度表示该变量的值大小或比例。
  2. 数据点:在每个射线上,根据变量的值确定相应的数据点或标记点的位置。
  3. 雷达链:连接各个数据点或标记点形成的多边形或区域,用于表示多个变量之间的关系。
  4. 区域范围:雷达链所连接的区域,面积大小代表各个数据综合的结果。

2. 适用的场景

雷达图适用的分析场景包括:

  • 比较综合表现:比较多个实体(如产品、团队、个人等)在多个指标上的表现,帮助决策者了解它们之间的差异和相对优劣。
  • 评估绩效和目标:帮助评估绩效和目标达成情况,从而指导后续决策和改进措施。
  • 变量之间的关系趋势:直观地发现多个变量之间的关系和趋势,例如某个变量的增长是否会导致其他变量的变化。
  • 强调优势和劣势:凸显实体在某些指标上的优势和劣势,有助于决策者更好地了解实体的特点和优势所在。

3. 不适用的场景

雷达图不适用的分析场景有:

  • 无序数据:如果数据是无序的,无法明确确定各个变量之间的相对位置和关系,雷达图的效果会大打折扣。
  • 数据缺失:如果某些变量的数据缺失或不完整,将导致雷达图无法准确地展示各个变量之间的关系和差异。
  • 多个并行路径:当存在多个并行路径时,例如多个团队或产品之间的比较,雷达图可能无法清晰地展示它们之间的差异和相对优劣。

4. 分析实战

本次通过雷达图来分析下王者荣耀KPL联盟几位选手的比赛数据。

4.1. 数据来源

数据来自王者荣耀官网(2023年春季赛数据),整理好的数据可以从下面下载:
databook.top/wzry/2023-s...

使用其中的文件:player-2023春季赛.csv

python 复制代码
fp = "d:/share/data/player-2023春季赛.csv"

df = pd.read_csv(fp)
df

4.2. 数据清理

选手的数据一共有125条,本来想按胜率选择最高 的4位选手,发现胜率高的选手很多只参加了1,2场比赛。

所以选择参加比赛最多6位选手来分析。

python 复制代码
data = df.sort_values("比赛场次", ascending=False)
data = data.iloc[:6]
data

选择每位选手下列5个属性来绘制雷达图:

  1. 经济占比
  2. 伤害占比
  3. 承伤占比
  4. 推塔占比
  5. 参团率
python 复制代码
filter_cols = ["选手", "经济占比", "伤害占比", "承伤占比", "推塔占比", "参团率"]
data = data.loc[:, filter_cols]
data

将百分比数据转为数值类型:

python 复制代码
for col in filter_cols[1:]:
    data[col] = data[col].str.replace("%", "", regex=False)
    data[col] = data[col].astype("float")

data

4.3. 分析结果可视化

绘制6位选手的雷达图:

python 复制代码
N = 5 # 雷达图属性个数
angles = np.linspace(0, 2 * np.pi, N, endpoint=False)
angles = np.concatenate((angles, [angles[0]]))

fig = plt.figure(figsize=[10, 6])
for i in range(len(data)):
    values = data.iloc[i, 1:].tolist()
    values.append(values[0])

    position = "23" + str(i + 1)
    ax = fig.add_subplot(int(position), polar=True)
    ax.plot(angles, values, "o-")
    ax.fill(angles, values, alpha=0.4)
    ax.set_thetagrids(angles[:-1] * 180 / np.pi,
                      data.columns[1:].tolist())
    ax.set_title(data.iloc[i, 0], color="b")
    ax.set_ylim(0, 100)

plt.subplots_adjust(hspace=0.5)

参赛最多的6位选手,5位都是佛山DRG 的队员,说明他们的首发阵容很稳定。
5个属性 连接起来的面积 ,看起来还是射手打野 的比较大,C位果然还是得看这两个位置。

相关推荐
YangYang9YangYan14 小时前
高职大数据技术专业学习与发展指南
大数据·人工智能·学习·数据分析
得物技术14 小时前
得物管理类目配置线上化:从业务痛点到技术实现
后端·算法·数据分析
形宙数字20 小时前
【形宙数字】MANGOLD INTERACT 行为观察分析系统-行为观察统计分析-人类行为学研究-行为逻辑
信息可视化·数据分析·行为观察分析系统·行为观察统计分析·人类行为学研究·行为逻辑·形宙数字
fl1768311 天前
基于python的天气预报系统设计和可视化数据分析源码+报告
开发语言·python·数据分析
YangYang9YangYan2 天前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车
CoovallyAIHub2 天前
首届AI交易大赛对决!中国模型包揽冠亚军,GPT-5亏损62%垫底
人工智能·google·数据分析
学掌门2 天前
用Python做数据分析之数据表清洗
数据挖掘·数据分析
IT小哥哥呀2 天前
Python实用技巧:批量处理Excel数据并生成销售报表(含实战案例)
python·pandas·数据可视化·数据处理·报表生成·excel自动化·办公神器
人大博士的交易之路2 天前
今日行情明日机会——20251104
大数据·数据挖掘·数据分析·缠论·涨停回马枪·道琼斯结构
hweiyu002 天前
Hive 技术深度解析与 P7 数据分析架构师多行业全场景实战课程合集(视频教程)
hive·数据分析