Tensorflow调用训练好的yolov5模型进行推理

文章目录

1、安装TensorFlow-GPU版本

bash 复制代码
1、创建虚拟环境python=3.8
conda create -n TF2.4 python=3.8

2、进入虚拟环境
conda activate TF2.4

3、去官网查看tensorflow对应cuda的版本
https://tensorflow.google.cn/install/source_windows?hl=zh-cn

conda search找找当前源下的CUDA与cuDNN有没有我们要的版本:

bash 复制代码
conda search cuda
conda search cudnn

conda install cudatoolkit=11.0.221
conda install cudnn=8.2.1

# 安装tensorflow-gpu版本
pip install tensorflow-gpu==2.4.0


1.2、验证是否安装正常

python 复制代码
import tensorflow as tf
print(tf.__version__)
print(tf.test.is_gpu_available())

2、将训练好的pt文件转换成onnx文件

2.2、什么是Onnx模型和Tensorflow模型

Onnx(Open Neural Network Exchange)是一种开放的深度学习模型交换格式,用于在不同的深度学习框架之间共享模型。它提供了一个中间格式,可以将模型从一个框架转换为另一个框架。

Tensorflow是一个广泛使用的深度学习框架,提供了强大的模型构建和训练工具。Tensorflow模型通常以.pb文件格式保存,它包含了模型的结构和参数。

2.1、将onnx文件转换成pb文件

可以通过yolov5中export.py文件进行转换

python 复制代码
python export.py --weights weights/best.pt --include onnx engine --img 640 --device 0

pb文件是tensorflow中可以使用的文件

使用代码进行转换

pip install --user tensorflow_probability==0.7.0

python 复制代码
import onnx
from onnx_tf.backend import prepare
import tensorflow.keras as keras



# 加载Onnx模型
onnx_model = onnx.load('best.onnx')

# 转换为Tensorflow模型
tf_model = prepare(onnx_model)

# 保存为.pb文件
tf_model.export_graph('best.pb')

源码进行转换

源码下载:https://github.com/onnx/onnx-tensorflow#installation

之后再终端安装:

python 复制代码
pip install -e.
pip install tensorflow-addons

都安装好之后就可以直接在终端进行转换了

python 复制代码
onnx-tf convert -i D:\\yolov5_back\\weights\\best.onnx -o D:\\yolov5_back\\weights\\best.onnx.pb

转换过程中可能会报两个错误:

错误1:from keras import backend

ModuleNotFoundError: No module named 'keras'

python 复制代码
# 点击进入报错的文件中,修改这行
from tensorflow.keras import backend

错误2:

from tensorflow.keras.utils import tf_utils

ImportError: cannot import name 'tf_utils' from 'tensorflow.keras.utils' (C:\Users\Administrator.conda\envs\Tensorflow_gpu_2.4\lib\site-packages\tensorflow\keras\utils_init_.py)

python 复制代码
# 解决方法直接将这行注释掉
from keras.utils import tf_utils
相关推荐
一屉大大大花卷1 天前
初识Neo4j之入门介绍(一)
数据库·neo4j
AustinCyy3 天前
【环境配置】Neo4j Community Windows 安装教程
windows·neo4j
萧鼎3 天前
深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
数据库·python·neo4j
背太阳的牧羊人3 天前
Cypher 是 Neo4j 专用的查询语言
neo4j
lishaoan773 天前
使用tensorflow的线性回归的例子(九)
tensorflow·线性回归·neo4j
背太阳的牧羊人3 天前
Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
数据库·neo4j·milvus
隆里卡那唔4 天前
在dify中通过http请求neo4j时为什么需要将localhost变为host.docker.internal
http·docker·neo4j
疯子的模样4 天前
Docker 安装 Neo4j 保姆级教程
docker·容器·neo4j
晋丑丑15 天前
从 0 到 1 构建 Graph RAG 系统:本地图谱 + 通义千问落地实践
前端·后端·python·neo4j
Lightning_201715 天前
Neo4j.5.X社区版创建数据库和切换数据库
数据库·oracle·neo4j