flink维度表关联

分析&回答

根据我们业务对维表数据关联的时效性要求,有以下几种解决方案:

1、实时查询维表

实时查询维表是指用户在Flink 的Map算子中直接访问外部数据库,比如用 MySQL 来进行关联,这种方式是同步方式,数据保证是最新的。最后,为了保证连接及时关闭和释放,一定要在最后的 close 方式释放连接,否则会将 MySQL 的连接数打满导致任务失败。

一般我们在查询小数据量的维表情况下才使用这种方式,并且要妥善处理连接外部系统的线程,一般还会用到线程池。

2、预加载全量数据

当我们的系统启动时,就将维度表数据全部加载到内存中,然后数据在内存中进行关联,不需要直接访问外部数据库。一旦维表数据发生更新,Flink 任务是无法感知,可以采取定时拉取维表数据

对计算节点的内存消耗很高,所以不能适用于数量很大的维度表

适用于那些实时场景不是很高,维表数据较小的场景

3、LRU 缓存(最近最少使用的数据则被淘汰)

如果维表的数据比较大,无法一次性全部加载到内存中,可以使用LRU策略加载维表数据。

利用 Flink 的 RichAsyncFunction 读取 Hbase 的数据到缓存中,我们在关联维度表时先去查询缓存,如果缓存中不存在这条数据,就利用客户端去查询 Hbase,然后插入到缓存中

4、将维表消息广播出去

复制代码
//1:初始化数据
DataSet<Integer> toBroadcast = env.fromElements(1, 2, 3)

//2:广播数据
.withBroadcastSet(toBroadcast, "broadcastSetName");

//3:获取数据
Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("broadcastSetName");
复制代码

反思&扩展

flink海量数据高效去重

①基于状态后端

②基于HyperLogLog:不是精准的去重

③基于布隆过滤器(BloomFilter)

快速判断一个key是否存在于某容器,不存在就直接返回。

④基于BitMap

用一个bit位来标记某个元素对应的Value,而Key即是该元素。由于采用了Bit为单位来存储数据,因此可以大大节省存储空间。

⑤基于外部数据库

选择使用Redis或者HBase存储数据,我们只需要设计好存储的Key即可,不需要关心Flink任务重启造成的状态丢失问题

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

相关推荐
Elastic 中国社区官方博客4 分钟前
Elastic 9.3:与数据对话、构建自定义 AI agents、实现全自动化
大数据·人工智能·elasticsearch·搜索引擎·ai·自动化·全文检索
双层吉士憨包7 分钟前
乐天Rakuten开店:乐天Rakuten跨境店VS本土店?2026实战攻略
大数据
档案宝档案管理13 分钟前
企业档案管理系统:从“资料存放”到“数据资产”的升级
大数据·人工智能·档案·档案管理
跨境卫士情报站18 分钟前
用“渠道矩阵+内容节奏”把流量做成可控资产
大数据·人工智能·矩阵·产品运营·跨境电商·亚马逊
一只专注api接口开发的技术猿31 分钟前
淘宝商品详情API的流量控制与熔断机制:保障系统稳定性的后端设计
大数据·数据结构·数据库·架构·node.js
EkihzniY1 小时前
涉外政务登记,精准识读保障合规办理
大数据·政务
rainbow7242441 小时前
系统学习AI的标准化路径,分阶段学习更高效
大数据·人工智能·学习
Guheyunyi2 小时前
节能降耗系统从“经验直觉”推向“精准智控”
大数据·数据库·人工智能·科技·信息可视化
跨境摸鱼2 小时前
选品别只看“需求”,更要看“供给”:亚马逊新思路——用“供给断层”挑出更好打的品
大数据·人工智能·跨境电商·亚马逊·跨境·营销策略
IvanCodes3 小时前
openGauss 实战手册:gsql 常用命令、认证配置与运维工具全解
大数据·数据库·sql·opengauss