2023_Spark_实验三:基于IDEA开发Scala例子

一、创建一个空项目,作为整个项目的基本框架

二、创建SparkStudy模块,用于学习基本的Spark基础

三、创建项目结构

1、在SparkStudy模块下的pom.xml文件中加入对应的依赖,并等待依赖包下载完毕。

在pom.xml文件中加入对应的依赖

XML 复制代码
​

<!-- Spark及Scala的版本号 -->

<properties>

<scala.version>2.11</scala.version>

<spark.version>2.1.1</spark.version>

</properties>

<!-- Mysql组件

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>5.7.22.1</version>

</dependency> 的依赖 -->

<!-- Spark各个组件的依赖 -->

<dependencies>

<!-- https://mvnrepository.com/artifact/com.thoughtworks.paranamer/paranamer -->

<dependency>

<groupId>com.thoughtworks.paranamer</groupId>

<artifactId>paranamer</artifactId>

<version>2.8</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_${scala.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-sql_${scala.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming_2.11</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-mllib_2.11</artifactId>

<version>2.1.1</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-8_${scala.version}</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>net.jpountz.lz4</groupId>

<artifactId>lz4</artifactId>

<version>1.3.0</version>

</dependency>

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>8.0.18</version>

</dependency>

<dependency>

<groupId>org.apache.flume.flume-ng-clients</groupId>

<artifactId>flume-ng-log4jappender</artifactId>

<version>1.7.0</version>

</dependency>

<!-- <dependency>-->

<!-- <groupId>org.apache.spark</groupId>-->

<!-- <artifactId>spark-streaming-flume-sink_2.10</artifactId>-->

<!-- <version>1.5.2</version>-->

<!-- </dependency>-->

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-hive_2.12</artifactId>

<version>2.4.8</version>

</dependency>

</dependencies>

<!-- 配置maven打包插件及打包类型 -->

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.1</version>

<configuration>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-assembly-plugin</artifactId>

<configuration>

<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>

</configuration>

</plugin>

</plugins>

</build>


​

等待依赖包下载完毕

2、若不能自动下载依赖包,则按以下步骤操作

四、创建SCALA目录

四、解决无法创建scala文件问题

验证:

问题解决!

五、编写第一个SCALA程序

成功!

相关推荐
在未来等你14 分钟前
Elasticsearch面试精讲 Day 26:集群部署与配置最佳实践
大数据·分布式·elasticsearch·搜索引擎·面试
api_1800790546016 分钟前
性能优化揭秘:将淘宝商品 API 响应时间从 500ms 优化到 50ms 的技术实践
大数据·数据库·性能优化·数据挖掘
Lx3522 小时前
Apache Flink入门:实时数据处理的利器
大数据
随心............3 小时前
yarn面试题
大数据·hive·spark
hdsoft_huge3 小时前
第六章 Kettle(PDI)解锁脚本组件:数据处理的可编程利器
java·大数据·etl
孤岛奇兵常凯申4 小时前
Scala中的高阶函数(一)
scala
最好束手就擒5 小时前
Elasticsearch批量写入50万数据
大数据·elasticsearch·jenkins
在未来等你5 小时前
Elasticsearch面试精讲 Day 25:Elasticsearch SQL与数据分析
大数据·分布式·elasticsearch·搜索引擎·面试
拓端研究室5 小时前
专题:2025年医疗健康行业状况报告:投融资、脑机接口、AI担忧|附130+份报告PDF合集、图表下载
大数据·人工智能
ZHOU_WUYI5 小时前
Apache Spark 集群部署与使用指南
大数据·spark·apache