Apache Spark 集群部署与使用指南

Apache Spark 集群部署与使用指南

本文档介绍如何使用 Docker 部署 Apache Spark 集群,并通过 PySpark 进行分布式数据处理。

目录

环境准备

确保您的系统已安装以下软件:

  • Docker
  • Docker Compose

集群部署

1. Docker Compose 配置

创建 docker-compose.yml 文件,配置 Spark 集群:

yaml 复制代码
services:
  spark-master:
    image: apache/spark:3.5.0
    container_name: spark-master
    ports:
      - "8080:8080"  # Spark Master Web UI
      - "7077:7077"  # Spark Master 端口
    command: /opt/spark/bin/spark-class org.apache.spark.deploy.master.Master
    environment:
      - SPARK_MASTER_HOST=0.0.0.0
      - SPARK_MASTER_PORT=7077
      - SPARK_MASTER_WEBUI_PORT=8080
    volumes:
      - ./data:/opt/spark-data
    networks:
      - spark-network

  spark-worker-1:
    image: apache/spark:3.5.0
    container_name: spark-worker-1
    ports:
      - "8081:8081"  # Worker 1 Web UI
    command: /opt/spark/bin/spark-class org.apache.spark.deploy.worker.Worker spark://spark-master:7077
    environment:
      - SPARK_WORKER_CORES=2
      - SPARK_WORKER_MEMORY=2g
      - SPARK_WORKER_WEBUI_PORT=8081
    depends_on:
      - spark-master
    volumes:
      - ./data:/opt/spark-data
    networks:
      - spark-network

  spark-worker-2:
    image: apache/spark:3.5.0
    container_name: spark-worker-2
    ports:
      - "8082:8081"  # Worker 2 Web UI
    command: /opt/spark/bin/spark-class org.apache.spark.deploy.worker.Worker spark://spark-master:7077
    environment:
      - SPARK_WORKER_CORES=2
      - SPARK_WORKER_MEMORY=2g
      - SPARK_WORKER_WEBUI_PORT=8081
    depends_on:
      - spark-master
    volumes:
      - ./data:/opt/spark-data
    networks:
      - spark-network

networks:
  spark-network:
    driver: bridge

volumes:
  spark-data:

2. 启动集群

bash 复制代码
# 启动 Spark 集群
docker-compose up -d

# 检查容器状态
docker-compose ps

连接集群

1. 进入 Master 容器

bash 复制代码
docker exec -it spark-master bash

2. 启动 PySpark Shell

在容器内执行以下命令连接到集群:

bash 复制代码
/opt/spark/bin/pyspark --master spark://spark-master:7077

数据处理示例

1. 验证集群连接

python 复制代码
# 验证 SparkContext 是否正确连接到集群
print("Spark version:", sc.version)
print("Master:", sc.master)
print("应用ID:", sc.applicationId)

2. 创建和处理 RDD

python 复制代码
# 创建一个简单的 RDD 进行计算
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
rdd = sc.parallelize(data)

# 执行分布式计算
result = rdd.map(lambda x: x * 2).filter(lambda x: x > 5).collect()
print("计算结果:", result)

预期输出:

复制代码
计算结果: [6, 8, 10, 12, 14, 16, 18, 20]

Web UI 访问

部署完成后,您可以通过以下 URL 访问 Spark Web UI:

通过 Web UI 可以监控:

  • 集群状态和资源使用情况
  • 正在运行的应用程序
  • 作业执行历史
  • 执行器状态

总结

通过本指南,您已经学会了:

  1. 使用 Docker Compose 部署 Spark 集群
  2. 连接到集群并使用 PySpark
  3. 执行基本的分布式数据处理任务
  4. 通过 Web UI 监控集群状态

这为进一步的大数据处理和分析奠定了基础。

相关推荐
TDengine (老段)6 分钟前
一文讲清 TDengine IDMP 资产数据导入
大数据·数据库·ai·时序数据库·tdengine·涛思数据
人大博士的交易之路24 分钟前
今日行情明日机会——20251201
大数据·数学建模·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
秋邱33 分钟前
技术深耕:教育 AGI 的能力跃迁与安全加固
大数据·人工智能
HAPPY酷41 分钟前
技术沟通的底层逻辑:用结构化方法提升协作效率
大数据·人工智能
原神启动11 小时前
云计算大数据——MySQL数据库一(数据库基础与MySQL安装)
大数据·数据库·云计算
金融小师妹2 小时前
AI视角下黄金避风港属性的量化验证:基于2000-2025年历史数据的时序分析
大数据·人工智能·深度学习·1024程序员节
一笑code2 小时前
git常用命令
大数据·git·elasticsearch
8K超高清2 小时前
超高清科技引爆中国电影向“新”力
大数据·运维·服务器·网络·人工智能·科技
弘毅 失败的 mian2 小时前
Git 基本操作
大数据·经验分享·笔记·git·elasticsearch
路边草随风2 小时前
flink实现写orc对数据进行分目录(分区表)写入
java·大数据·flink