Decomposed Prompting: A MODULAR APPROACH FOR SOLVING COMPLEX TASKS

本文是LLM系列文章,针对《Decomposed Prompting: A MODULAR APPROACH FOR SOLVING COMPLEX TASKS》的翻译。

分解提示:一种求解复杂任务的模块化方法

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 分解提示](#3 分解提示)
  • [4 案例](#4 案例)
  • [5 结论](#5 结论)

摘要

小样本提示是一种使用大型语言模型(LLM)来解决各种任务的强大方法。然而,随着任务复杂性的增加,或者当任务本身的各个推理步骤很难学习时,尤其是当嵌入到更复杂的任务中时,这种方法会很困难。为了解决这一问题,我们提出了分解提示,这是一种通过将复杂任务分解(通过提示)为更简单的子任务来解决复杂任务的新方法,这些子任务可以委托给专用于这些子任务的基于提示的LLM的共享库。这种模块化结构允许每个提示都针对其特定的子任务进行优化,必要时进行进一步分解,甚至可以根据需要轻松地用更有效的提示、经过训练的模型或符号函数替换。

我们表明,分解提示的灵活性和模块性使其在使用GPT-3的小样本提示方面优于先前的工作。在符号推理任务中,我们可以将LLM难以解决的子任务进一步分解为更简单的可解子任务。当复杂性来自输入长度时,我们可以递归地将任务分解为相同的任务,但输入较小。我们还评估了我们在文本多步骤推理任务上的方法:在长上下文多跳QA上,我们可以通过单独的子任务提示更有效地教授子任务;在开放域多跳QA上,我们可以很容易地将符号信息检索模块纳入我们的分解框架中,从而提高这两项任务的性能。

1 引言

2 相关工作

3 分解提示

4 案例

5 结论

我们提出了一种新的方法,分解提示,通过将复杂任务分解为一个由更简单的子任务构建的提示程序,使用小样本提示来解决复杂任务。从软件库中汲取灵感,我们的分解器和共享子任务以模块化的方式设计:它们使用自己的少量提示,允许独立优化每个提示,必要时进一步分解子任务,甚至用符号系统无缝替换它。我们表明,分解提示在四种不同的任务和泛化设置上优于先前的工作,使其成为解决复杂任务的有效的小样本范例。

相关推荐
LaughingZhu几秒前
Product Hunt 每日热榜 | 2025-12-20
人工智能·经验分享·深度学习·神经网络·产品运营
love530love几秒前
Win11+RTX3090 亲测 · ComfyUI Hunyuan3D 全程实录 ②:nvdiffrast 源码编译实战(CUDA 13.1 零降级)
人工智能·windows·python·github·nvdiffrast
————A几秒前
强化学习---->多臂老虎机问题
人工智能
pingao1413782 分钟前
从数据到预警:自动雨量监测站如何用科技解码暴雨密码
人工智能·科技
undsky_8 分钟前
【n8n教程】:执行工作流——从手动测试到生产自动化
人工智能·ai·aigc·ai编程
牛客企业服务8 分钟前
牛客AI面试蓝领案例:破解制造业招聘效率困局
人工智能·面试·职场和发展
oscar9999 分钟前
深度学习测试题与解析
人工智能·深度学习·测试题
小oo呆10 分钟前
【自然语言处理与大模型】LangChainV1.0入门指南:核心组件Models
人工智能·自然语言处理
Ama_tor11 分钟前
AI-agent|从人工智能代理角度再延伸至扣子编程
人工智能
北冥有一鲲11 分钟前
LangChain 框架前世今生:从“万能接口”到“AI 应用全家桶”
人工智能·chatgpt·langchain