Decomposed Prompting: A MODULAR APPROACH FOR SOLVING COMPLEX TASKS

本文是LLM系列文章,针对《Decomposed Prompting: A MODULAR APPROACH FOR SOLVING COMPLEX TASKS》的翻译。

分解提示:一种求解复杂任务的模块化方法

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 分解提示](#3 分解提示)
  • [4 案例](#4 案例)
  • [5 结论](#5 结论)

摘要

小样本提示是一种使用大型语言模型(LLM)来解决各种任务的强大方法。然而,随着任务复杂性的增加,或者当任务本身的各个推理步骤很难学习时,尤其是当嵌入到更复杂的任务中时,这种方法会很困难。为了解决这一问题,我们提出了分解提示,这是一种通过将复杂任务分解(通过提示)为更简单的子任务来解决复杂任务的新方法,这些子任务可以委托给专用于这些子任务的基于提示的LLM的共享库。这种模块化结构允许每个提示都针对其特定的子任务进行优化,必要时进行进一步分解,甚至可以根据需要轻松地用更有效的提示、经过训练的模型或符号函数替换。

我们表明,分解提示的灵活性和模块性使其在使用GPT-3的小样本提示方面优于先前的工作。在符号推理任务中,我们可以将LLM难以解决的子任务进一步分解为更简单的可解子任务。当复杂性来自输入长度时,我们可以递归地将任务分解为相同的任务,但输入较小。我们还评估了我们在文本多步骤推理任务上的方法:在长上下文多跳QA上,我们可以通过单独的子任务提示更有效地教授子任务;在开放域多跳QA上,我们可以很容易地将符号信息检索模块纳入我们的分解框架中,从而提高这两项任务的性能。

1 引言

2 相关工作

3 分解提示

4 案例

5 结论

我们提出了一种新的方法,分解提示,通过将复杂任务分解为一个由更简单的子任务构建的提示程序,使用小样本提示来解决复杂任务。从软件库中汲取灵感,我们的分解器和共享子任务以模块化的方式设计:它们使用自己的少量提示,允许独立优化每个提示,必要时进一步分解子任务,甚至用符号系统无缝替换它。我们表明,分解提示在四种不同的任务和泛化设置上优于先前的工作,使其成为解决复杂任务的有效的小样本范例。

相关推荐
阿杰学AI3 分钟前
AI核心知识106—大语言模型之 World Model Trainer(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·世界模型·世界模型训练师
这是个栗子7 分钟前
AI辅助编程工具(七) - Cursor
人工智能·ai·cursor
Liue612312319 分钟前
基于YOLO11-CARAFE的手指区域识别与标注分类方法研究
人工智能·分类·数据挖掘
说私域11 分钟前
链动2+1模式AI智能名片S2B2C商城小程序在微商信任重建中的创新应用与价值实现
大数据·人工智能·小程序·私域运营
菜鸟小芯29 分钟前
DAY1 从 “会聊天” 到 “能做事”:OpenClaw 开源 AI 智能体全解析
人工智能·开源·华为云
Jouham31 分钟前
全链路 AI 获客 vs 传统拓客:瞬维智能如何用效率与成本重构中小企获客逻辑
人工智能·重构
DisonTangor33 分钟前
MiniMax AI 开源 MiniMax-M2.5
人工智能·语言模型·自然语言处理·开源·aigc
啊阿狸不会拉杆36 分钟前
《机器学习导论》第 19 章 - 机器学习实验的设计与分析
人工智能·python·算法·决策树·机器学习·统计检验·评估方法
路人与大师37 分钟前
大庆油田全链路智能体化设计草案
网络·人工智能
格林威40 分钟前
Baumer相机薄膜厚度均匀性评估:基于光学干涉条纹的 6 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·智能相机·堡盟相机