量化QAT QLoRA GPTQ

模型量化的思路可以分为PTQ(Post-Training Quantization,训练后量化)和QAT(Quantization Aware Training,在量化过程中进行梯度反传更新权重,例如QLoRA),GPTQ是一种PTQ的思路。

QAT(Quantization Aware Training)

BN需要先融合掉:

伪量化节点是根据融合图来决定的

量化过程中不可导的部分是Round函数,Hinton论文中把他的导数置为1,这就解决了量化框架中梯度反向传播的问题,图片截取自https://www.bilibili.com/video/BV13s4y1D73L/:

AdaRound和AdaQuant这些论文都是一层层训练的,QAT需要把某些层切成子图,对子图量化即可。

QLoRA

几个关键点:

  • 4bit NormalFloat 量化
  • 双重量化
  • Page Optimizer:Page Optimizer机制使得在GPU显存吃紧的时候可以把optimizer转移到内存上,在需要更新optimizer状态时再加载回来,据说可以有效减少GPU显存的峰值占用,文章称想要达到在24gb上训练33B 参数模型这个机制是必须的

QLoRA实现中用了bitsandbytes这个库

GPT

例如TensorRT的后量化,paddlepaddle的后量化,推理框架最清楚网络做哪些图融合,但是GPT不会训练,不会梯度反传。PPQ是商汤出的量化框架

GPTQ

GPTQ并不是完全凭空头脑风暴出来的想法,而是经过OBD(Optimal Brain Damage)->OBS(Optimal Brain Surgeon,Second Order Derivatives for Network Pruning)-> OBQ(Optimal Brain Quantization)->GPTQ逐渐演化过来的。这一类思路基本的出发点在于先考虑一个单层的网络W,如何找到一个量化后的网络Wq,使得W和Wq之间的差别最小?OBD方法是Lecun在1989年就在搞的方法,主要思路用W和Wq之间的误差进行泰勒展开,展开后舍弃一些项,得到利用海森矩阵进行迭代更新;OBS方法发现OBD方法在进行权重剪切的过程中并不完全合理,所以新增了权重删除补偿的策略(参考https://readpaper.feishu.cn/docx/HaM7d7uGhoQ2VPxxZBacpduDny7);OBS在执行中是直接把权重展开计算对应的海森矩阵,然后按照顺序进行量化,OBQ对量化的顺序进行了调整,将权重分行进行计算,利用贪心算法每次找到量化误伤最小的行进行量化,量化复杂度显著降低;GPTQ在OBQ基础上进行顺序量化+组内联合,进一步降低了量化的复杂度(参考https://readpaper.feishu.cn/docx/OPP2dTuXAoaO0oxWhQAcC05Wnpc)

GPTQ在实现中用Cholesky分解来稳定了数值计算

相关推荐
shayudiandian43 分钟前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
子午1 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
韩曙亮2 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
饭饭大王6663 小时前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
小喵要摸鱼3 小时前
【卷积神经网络】卷积层、池化层、全连接层
人工智能·深度学习·cnn
LO嘉嘉VE3 小时前
学习笔记二十一:深度学习
笔记·深度学习·学习
vvoennvv4 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
玦尘、5 小时前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
xwill*5 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
网安INF5 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归