量化QAT QLoRA GPTQ

模型量化的思路可以分为PTQ(Post-Training Quantization,训练后量化)和QAT(Quantization Aware Training,在量化过程中进行梯度反传更新权重,例如QLoRA),GPTQ是一种PTQ的思路。

QAT(Quantization Aware Training)

BN需要先融合掉:

伪量化节点是根据融合图来决定的

量化过程中不可导的部分是Round函数,Hinton论文中把他的导数置为1,这就解决了量化框架中梯度反向传播的问题,图片截取自https://www.bilibili.com/video/BV13s4y1D73L/:

AdaRound和AdaQuant这些论文都是一层层训练的,QAT需要把某些层切成子图,对子图量化即可。

QLoRA

几个关键点:

  • 4bit NormalFloat 量化
  • 双重量化
  • Page Optimizer:Page Optimizer机制使得在GPU显存吃紧的时候可以把optimizer转移到内存上,在需要更新optimizer状态时再加载回来,据说可以有效减少GPU显存的峰值占用,文章称想要达到在24gb上训练33B 参数模型这个机制是必须的

QLoRA实现中用了bitsandbytes这个库

GPT

例如TensorRT的后量化,paddlepaddle的后量化,推理框架最清楚网络做哪些图融合,但是GPT不会训练,不会梯度反传。PPQ是商汤出的量化框架

GPTQ

GPTQ并不是完全凭空头脑风暴出来的想法,而是经过OBD(Optimal Brain Damage)->OBS(Optimal Brain Surgeon,Second Order Derivatives for Network Pruning)-> OBQ(Optimal Brain Quantization)->GPTQ逐渐演化过来的。这一类思路基本的出发点在于先考虑一个单层的网络W,如何找到一个量化后的网络Wq,使得W和Wq之间的差别最小?OBD方法是Lecun在1989年就在搞的方法,主要思路用W和Wq之间的误差进行泰勒展开,展开后舍弃一些项,得到利用海森矩阵进行迭代更新;OBS方法发现OBD方法在进行权重剪切的过程中并不完全合理,所以新增了权重删除补偿的策略(参考https://readpaper.feishu.cn/docx/HaM7d7uGhoQ2VPxxZBacpduDny7);OBS在执行中是直接把权重展开计算对应的海森矩阵,然后按照顺序进行量化,OBQ对量化的顺序进行了调整,将权重分行进行计算,利用贪心算法每次找到量化误伤最小的行进行量化,量化复杂度显著降低;GPTQ在OBQ基础上进行顺序量化+组内联合,进一步降低了量化的复杂度(参考https://readpaper.feishu.cn/docx/OPP2dTuXAoaO0oxWhQAcC05Wnpc)

GPTQ在实现中用Cholesky分解来稳定了数值计算

相关推荐
信息快讯40 分钟前
AI+有限元:复合材料研发的“时间魔法”,从10年到3周的范式革命
人工智能·机器学习·材料工程·复合材料
computersciencer1 小时前
用最小二乘法求解一元一次方程模型的参数
算法·机器学习·最小二乘法
人工智能培训1 小时前
如何大幅降低大模型的训练和推理成本?
人工智能·深度学习·大模型·知识图谱·强化学习·智能体搭建·大模型工程师
之之为知知1 小时前
NLP进化史:一场「打补丁」的技术接力赛
人工智能·深度学习·机器学习·自然语言处理·大模型
Dev7z1 小时前
基于多尺度深度卷积增强的YOLO11公共区域发传单违规行为检测系统(2026年 力作)
人工智能·深度学习·机器学习
AI科技星1 小时前
光子的几何起源与量子本质:一个源于时空本底运动的统一模型
服务器·人工智能·线性代数·算法·机器学习
清蒸鳜鱼1 小时前
【系列跟学之——强化学习】基础篇
机器学习·语言模型·强化学习
Duang007_2 小时前
拆解 Transformer 的灵魂:全景解析 Attention 家族 (Self, Cross, Masked & GQA)
人工智能·深度学习·transformer
xixixi777773 小时前
对 两种不同AI范式——Transformer 和 LSTM 进行解剖和对比
人工智能·深度学习·大模型·lstm·transformer·智能·前沿
十六年开源服务商3 小时前
WordPress集成GoogleAnalytics最佳实践指南
前端·人工智能·机器学习