04动手学深度学习(下)

数据预处理

创建一个人工数据集,并存储在csv(逗号分隔)文件

python 复制代码
import os

os.makedirs(os.path.join('..','data'),exist_ok=True)
data_file=os.path.join('..','data','house_tiny.csv')
with open(data_file,'w') as f:
    f.write('NumRooms,Alley,Price\n')  #列名
    f.write('NA,Pave,127500\n')   #每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')
    
python 复制代码
import pandas as pd

data=pd.read_csv(data_file)
print(data)
复制代码
   NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000

为处理缺失值,典型方法包含插值和删除,这里采用插值的方法

python 复制代码
inputs,outputs=data.iloc[:,0:2],data.iloc[:,2]  #其中使用iloc即index location进行元素定位
inputs=inputs.fillna(inputs.mean(numeric_only=True))  #将缺失值填充为原先值的均值
print(inputs)
复制代码
   NumRooms Alley
0       3.0  Pave
1       2.0   NaN
2       4.0   NaN
3       3.0   NaN
python 复制代码
inputs=pd.get_dummies(inputs,dummy_na=True).astype(int)
print(inputs)
复制代码
   NumRooms  Alley_Pave  Alley_nan
0         3           1          0
1         2           0          1
2         4           0          1
3         3           0          1
python 复制代码
import torch

X,y=torch.tensor(inputs.values),torch.tensor(outputs.values)
X,y
复制代码
(tensor([[3, 1, 0],
         [2, 0, 1],
         [4, 0, 1],
         [3, 0, 1]]),
 tensor([127500, 106000, 178100, 140000]))

转换为NumPy张量

python 复制代码
a=torch.tensor([3.5])
a,a.item(),float(a),int(a)
复制代码
(tensor([3.5000]), 3.5, 3.5, 3)
python 复制代码
相关推荐
ARM+FPGA+AI工业主板定制专家23 分钟前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡26 分钟前
wordpiece、unigram、sentencepiece基本原理
人工智能
ㄣ知冷煖★28 分钟前
【GPT5系列】ChatGPT5 提示词工程指南
人工智能
科士威传动28 分钟前
丝杆支撑座在印刷设备如何精准运行?
人工智能·科技·自动化·制造
taxunjishu2 小时前
DeviceNet 转 Modbus TCP 协议转换在 S7-1200 PLC化工反应釜中的应用
运维·人工智能·物联网·自动化·区块链
kalvin_y_liu2 小时前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技2 小时前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
Juchecar5 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66685 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0445 小时前
京东agent之joyagent解读
人工智能