Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
Nwiliuyw1 分钟前
Isaac Gym的WARNING: Forcing cpu pipeline. GPU pipeline disabled无法启用问题可能是个幌子骗了你
人工智能·经验分享·学习
GAOJ_K3 分钟前
旋转花键如何保障精密设备长期运行高精度?
人工智能·科技·自动化·制造
神算大模型APi--天枢6464 分钟前
合规落地加速期,大模型后端开发与部署的实战指南
大数据·前端·人工智能·架构·硬件架构
CaiGuoHui16 分钟前
利用大型语言模型(LLM)实现Verilog设计中的功能缺陷定位
人工智能·深度学习·语言模型·自然语言处理
BlockWay7 分钟前
WEEX唯客:市场波动加剧背景下,用户为何更关注平台的稳定性与安全性
大数据·人工智能·安全
QYZL_AIGC11 分钟前
AI 赋能实体,全域众链创业的生态共赢新范式
大数据·人工智能
阿水实证通14 分钟前
当工具变量遇上深度学习:DeepIV如何看透因果?
人工智能·深度学习·因果推断·实证分析·工具变量·内生性
传说故事14 分钟前
【论文自动阅读】Unified Video Action Model
人工智能·深度学习·机器学习·具身智能
renhongxia124 分钟前
用大型语言模型进行复杂相对局部描述的地理定位
人工智能·语言模型·自然语言处理
core51225 分钟前
ReLU 激活函数:神经网络的“开关”
人工智能·深度学习·神经网络·relu