Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
wengad6 分钟前
豆包的深入研究的浅析-应用于股市投顾
人工智能
KdanMin10 分钟前
“日志抓不到”到“全链路可追溯”:一次 Android 系统级日志体系的工程化实践
大数据·人工智能
apocalypsx10 分钟前
深度学习-使用块的网络VGG
人工智能·深度学习
陈天伟教授14 分钟前
人工智能应用-机器视觉:AI 鉴伪 07.虚假图片鉴别
人工智能·神经网络·数码相机·生成对抗网络·dnn
珠海西格电力14 分钟前
零碳园区如何实现能源互联
大数据·人工智能·物联网·架构·能源
东方佑15 分钟前
SamOut 架构数学证明:cusmax + 卷积 vs Softmax 注意力
人工智能
小程故事多_8017 分钟前
从14.3%到94.3%,破解Agent联网搜索“噪声致幻”的核心密码
人工智能·aigc
BFT白芙堂20 分钟前
游戏化机器人数据采集:以Franka Research 3为核心的RoboCade创新实践
人工智能·深度学习·机器学习·机器人·具身智能·franka
草莓熊Lotso22 分钟前
Qt 控件美化与交互进阶:透明度、光标、字体与 QSS 实战
android·java·开发语言·c++·人工智能·git·qt
待磨的钝刨22 分钟前
目标检测三大技术路线综述:Proposal-based, Anchor-based, Anchor-free
人工智能·目标检测·计算机视觉