Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
后端小张1 分钟前
【TextIn大模型加速器 + 火山引擎】TextIn大模型加速器与火山引擎协同构建智能文档处理新范式
人工智能·学习·数据挖掘·langchain·tensorflow·gpt-3·火山引擎
540_5402 分钟前
ADVANCE Day31
人工智能·python·机器学习
沫儿笙2 分钟前
发那科机器人气保焊二元混合气节气
人工智能·机器人
玖日大大10 分钟前
RAG技术深度解析与实践:让LLM拥有实时知识库
人工智能·aigc
程序员老赵15 分钟前
ComfyUI Docker 镜像部署指南
人工智能·docker·aigc
A尘埃21 分钟前
大模型部署方式(本地化部署+云端部署+混合部署+边缘段部署)
语言模型·大模型部署
用户51914958484522 分钟前
Next.js CVE-2025-29927漏洞自动化扫描器
人工智能·aigc
mys551823 分钟前
杨建允:AI搜索优化对本地生活、本地服务行业的影响
人工智能·ai搜索优化·ai引擎优化
code tsunami26 分钟前
如何将 Helium 与 CapSolver 集成,实现无缝 CAPTCHA 自动化解决
运维·数据库·人工智能·爬虫·python·自动化
AI科技星26 分钟前
空间螺旋电磁耦合常数 Z‘:拨开迷雾,让电磁力变得直观易懂
服务器·人工智能·科技·算法·生活