Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
AndrewHZ9 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI9 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课11 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo21 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn25 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy30 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域1 小时前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源