Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
名誉寒冰几秒前
AI大模型-Prompt工程参考学习
人工智能·学习·大模型·prompt
LiFileHub2 分钟前
Foreword(前言)
人工智能
许泽宇的技术分享6 分钟前
当AI遇见UI:用.NET Blazor实现Google A2UI协议的完整之旅
人工智能·ui·.net·blazor·a2ui
源代码杀手7 分钟前
Fun-Audio-Chat-8B 大型音频语言模型(Large Audio Language Model)
人工智能·语言模型·音视频
Pyeako11 分钟前
深度学习--CUDA安装配置、pytorch库、torchvision库、torchaudio库安装
人工智能·pytorch·python·深度学习·gpu·cuda
无人装备硬件开发爱好者16 分钟前
AI 辅助程序设计的趋势与范式转移:编码、审核、测试全流程深度解析
大数据·人工智能·架构·核心竞争力重构
趁月色小酌***16 分钟前
星盾护航 + AI 协同:鸿蒙 6.0 金融支付安全场景从 0 到 1 实战闯关
人工智能·金融·harmonyos
l1t18 分钟前
DeepSeek对利用DuckDB求解Advent of Code 2021第9题“烟雾盆地”第二部分SQL的分析
数据库·人工智能·sql·递归·duckdb·deepseek·cte
草莓熊Lotso19 分钟前
技术深耕,破局成长:我的2025年度技术创作之路
大数据·开发语言·c++·人工智能·年度总结
小龙19 分钟前
【学习笔记】通过准确率/精确率/召回率/F1分数判断模型效果+数据可视化实操
人工智能·笔记·学习·评价指标·大模型指标