Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

本文是LLM系列文章,针对《Relation Extraction as Open-book Examination:

Retrieval

关系提取作为开卷测试:检索增强提示调整

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 实验](#3 实验)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

经过预训练的语言模型通过表现出显著的小样本学习能力,对关系提取做出了重大贡献。然而,用于关系提取的提示调优方法可能仍然无法推广到那些罕见或困难的模式。注意,以前的参数学习范式可以被视为将训练数据视为一本书的记忆,将推理视为闭书测试。在给定小样本实例的情况下,这些长尾或硬模式很难被记忆在参数中。为此,我们将RE视为一种开卷考试,并提出了一种新的半参数检索范式------增强关系提取的提示调整。我们构建了一个开放式书籍数据存储,用于检索基于提示的实例表示和作为存储键值对的对应关系标签。在推断过程中,该模型可以通过线性插值PLM的基本输出与数据存储上的非参数最近邻分布来推断关系。通过这种方式,我们的模型不仅通过训练期间存储在权重中的知识推断关系,而且通过展开和查询开卷数据存储中的示例来帮助决策。在基准数据集上进行的大量实验表明,我们的方法可以在标准监督和小样本设置中达到最先进的水平。

1 引言

2 方法

3 实验

4 相关工作

5 结论

在这项工作中,我们将RE视为一种开卷考试,并提出了检索增强的提示调优,这是一种新的RE范式,允许PLM引用开卷数据存储中的类似实例。RetrievalRE的成功表明,基于作为参考的提示调优来检索相关上下文,使PLM更容易预测长尾或硬模式。我们将考虑在未来的工作中使用更具体的功能来丰富开卷数据存储的组成。

相关推荐
孟祥_成都3 分钟前
Prompt 还能哄女朋友!你真的知道如何问 ai 问题吗?
前端·人工智能
小马爱打代码7 分钟前
Spring AI:提示词工程 - Prompt 角色分类(系统角色与用户角色)
人工智能·spring·prompt
Ttang237 分钟前
【AI学习1】了解开源大模型
人工智能·学习·开源
小马爱打代码9 分钟前
Spring AI:多模态 AI 大模型
java·人工智能·spring
johnny23311 分钟前
蚂蚁百灵研发助手CodeFuse介绍
人工智能
paopao_wu15 分钟前
阿里通义实验室开源Z-Image:6B参数的AI图像生成
人工智能·ai·开源
haing201922 分钟前
三次 B 样条曲线基于曲率极值的限速速度规划方法
人工智能·b样条·曲率极值限速
AutumnorLiuu27 分钟前
【红外小目标检测实战 四】使用风车卷积和Neck多层融合改进
人工智能·目标检测·计算机视觉
亿林-智企AI40 分钟前
AI数字人技术浪潮:亿林数据引领人机交互新范式
人工智能·人机交互·智能客服·ai数字人·ai智能体·算力一体机
TechMasterPlus41 分钟前
openhands论文解读
人工智能