Introducing Language Guidance in Prompt-based Continual Learning

本文是LLM系列文章,针对《Introducing Language Guidance in Prompt-based Continual Learning》的翻译。

基于提示的持续学习中引入语言指导

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 背景](#3 背景)
  • [4 基于提示的持续学习语言指导](#4 基于提示的持续学习语言指导)
  • [5 实验](#5 实验)
  • [6 结论](#6 结论)

摘要

持续学习旨在学习一系列任务的单一模型,而无需访问以前任务的数据。该领域最大的挑战仍然是灾难性的遗忘:早期任务的可见类的性能损失。一些现有的方法依赖于昂贵的重放缓冲区来存储以前任务的数据块。这虽然很有前景,但当任务数量变大或由于隐私原因无法存储数据时,成本会变得很高。作为替代方案,已经提出了将任务信息存储在可学习提示池中的基于提示的方法。此提示池指示冻结图像编码器如何解决每个任务。虽然在这种设置下,模型在每个任务中都面临一组不相交的类,但我们认为这些类可以被编码到预先训练的语言编码器的相同嵌入空间中。在这项工作中,我们提出了基于提示的持续学习的语言指导(LGCL),作为基于提示的方法的插件。LGCL与模型无关,在提示池的任务级别和视觉编码器的输出特性的类级别引入了语言指导。我们通过大量实验表明,LGCL不断提高基于提示的连续学习方法的性能,从而开创了新的技术水平。LGCL在不需要任何额外的可学习参数的情况下实现了这些性能改进。

1 引言

2 相关工作

3 背景

4 基于提示的持续学习语言指导

5 实验

6 结论

在这项工作中,我们引入了一个新的视角,即在基于提示的持续学习中引入语言指导。我们的方法背后的关键直觉是,即使任务分布在任务之间发生变化,它们的标签空间也可以映射到相同的语言空间。一个能够学会映射到这个空间的模型可以减轻灾难性的遗忘,从而提高性能。我们在两个层面引入语言指导;即任务级别和类级别。在任务级别,我们为提示池引入了语言指导,在提示池中,模型需要为预先训练的视觉转换器的类条件反射选择相关提示。通过改进提示池的密钥查找,我们可以使模型在不同的任务中更加健壮。为此,我们鼓励模型将键映射到其各自的任务级语言表示。其次,我们在视觉转换器的输出特性中引入了类级别的语言指导。在这个阶段,我们激励模型将输出特征映射到类级别的语言表示。在没有任何额外学习参数的情况下,我们的方法提高了基于基线提示的连续学习方法的性能,创造了新的技术水平。

相关推荐
weixin_442424031 分钟前
Opencv计算机视觉编程攻略-第七节 提取直线、轮廓和区域
人工智能·opencv·计算机视觉
x-cmd4 分钟前
[250401] OpenAI 向免费用户开放 GPT-4o 图像生成功能 | Neovim 0.11 新特性解读
人工智能·gpt·文生图·openai·命令行·neovim
HABuo13 分钟前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
Bruce_Liuxiaowei16 分钟前
智能语音识别工具开发手记
人工智能·python·语音识别
王亭_66619 分钟前
Ollama+open-webui搭建私有本地大模型详细教程
人工智能·大模型·ollama·openwebui·deepseek
集和诚JHCTECH23 分钟前
集和诚携手Intel重磅发布BRAV-7820边缘计算新品,为车路云一体化场景提供强大算力支撑
人工智能·嵌入式硬件·边缘计算
itwangyang52025 分钟前
人工智能在生物医药领域的应用地图:AIBC2025将于6月在上海召开!
人工智能·百度
PingCAP38 分钟前
TiDB 亮相宜昌“医院‘云数智’技术实践研讨及成果展示交流会”,探讨国产化 + AI 背景下的数据库新趋势
数据库·人工智能·tidb
文弱_书生39 分钟前
再谈图像处理中的傅里叶变换
图像处理·人工智能·傅里叶变换
钡铼技术物联网关41 分钟前
ARM边缘计算时代:BLIoTLink如何打通设备互联任督二脉
arm开发·人工智能·边缘计算