使用词袋模型(BoW)测试提取图像的特征点和聚类中心

文章目录


环境配置

(1) 导入opencv,参考链接

bash 复制代码
https://blog.csdn.net/Aer_7z/article/details/132612369

(2) 安装numpy

激活虚拟环境的前提下,输入:

bash 复制代码
pip install numpy

(3) 安装sklearn

激活虚拟环境的前提下,输入:

bash 复制代码
pip install scikit-learn

代码测试

在pycharm端运行下列代码(在同一目录下放置一张名为image.jpg的图片)。

bash 复制代码
import cv2
import numpy as np
from sklearn.cluster import KMeans

# 加载图像
image = cv2.imread("image.jpg", 0)  # 使用灰度模式加载图像

# 创建 SIFT 特征提取器对象
sift = cv2.SIFT_create()

# 检测关键点和计算特征描述符
keypoints, descriptors = sift.detectAndCompute(image, None)

# 将特征描述符存储在 features 变量中
features = np.array(descriptors)



# 假设你已经提取了局部特征并将其存储在 features 变量中,features 是一个 N × D 的矩阵,
# 其中 N 是特征数量,D 是每个特征的维度

# 聚类算法的参数设置
num_clusters = 100  # 聚类簇的数量

# 创建聚类算法对象
kmeans = KMeans(n_clusters=num_clusters)

# 执行聚类算法
kmeans.fit(features)

# 获取每个局部特征的聚类标签
labels = kmeans.labels_

# 获取聚类中心
centroids = kmeans.cluster_centers_

# 输出每个特征的聚类标签和聚类中心
for i in range(len(features)):
    print("特征", i, "的聚类标签:", labels[i])

print("\n聚类中心:")
for i in range(num_clusters):
    print("聚类", i, "的中心:", centroids[i])

至此,结束

相关推荐
cvyoutian7 分钟前
PyTorch 多卡训练常见坑:设置 CUDA_VISIBLE_DEVICES 后仍 OOM 在 GPU 0 的解决之道
人工智能·pytorch·python
Cat God 0078 分钟前
CentOS 搭建 SFTP 服务器(三)
服务器·python·centos
周杰伦_Jay12 分钟前
【后端开发语言对比】Java、Python、Go语言对比及开发框架全解析
java·python·golang
咖啡の猫14 分钟前
Python列表推导式
开发语言·python
2501_9216494915 分钟前
外汇与贵金属行情 API 集成指南:WebSocket 与 REST 调用实践
网络·后端·python·websocket·网络协议·金融
落雪snowflake16 分钟前
compute_entropy函数
pytorch·python·深度学习
测试人社区-小明20 分钟前
医疗AI测试:构建安全可靠的合规体系
运维·人工智能·opencv·数据挖掘·机器人·自动化·github
shenzhenNBA21 分钟前
python用openpyxl操作excel-读取或创建excel文件
python·excel·读取excel·创建excel文件
小霖家的混江龙22 分钟前
大模型如何分辨 “狼” 和 “狗” —— 词向量的训练过程
人工智能·python·llm
大猫子的技术日记24 分钟前
【工具篇】极简入门 UV Python项目管理工具
开发语言·python·uv