使用词袋模型(BoW)测试提取图像的特征点和聚类中心

文章目录


环境配置

(1) 导入opencv,参考链接

bash 复制代码
https://blog.csdn.net/Aer_7z/article/details/132612369

(2) 安装numpy

激活虚拟环境的前提下,输入:

bash 复制代码
pip install numpy

(3) 安装sklearn

激活虚拟环境的前提下,输入:

bash 复制代码
pip install scikit-learn

代码测试

在pycharm端运行下列代码(在同一目录下放置一张名为image.jpg的图片)。

bash 复制代码
import cv2
import numpy as np
from sklearn.cluster import KMeans

# 加载图像
image = cv2.imread("image.jpg", 0)  # 使用灰度模式加载图像

# 创建 SIFT 特征提取器对象
sift = cv2.SIFT_create()

# 检测关键点和计算特征描述符
keypoints, descriptors = sift.detectAndCompute(image, None)

# 将特征描述符存储在 features 变量中
features = np.array(descriptors)



# 假设你已经提取了局部特征并将其存储在 features 变量中,features 是一个 N × D 的矩阵,
# 其中 N 是特征数量,D 是每个特征的维度

# 聚类算法的参数设置
num_clusters = 100  # 聚类簇的数量

# 创建聚类算法对象
kmeans = KMeans(n_clusters=num_clusters)

# 执行聚类算法
kmeans.fit(features)

# 获取每个局部特征的聚类标签
labels = kmeans.labels_

# 获取聚类中心
centroids = kmeans.cluster_centers_

# 输出每个特征的聚类标签和聚类中心
for i in range(len(features)):
    print("特征", i, "的聚类标签:", labels[i])

print("\n聚类中心:")
for i in range(num_clusters):
    print("聚类", i, "的中心:", centroids[i])

至此,结束

相关推荐
写代码的【黑咖啡】3 分钟前
深入了解 Python 中的 Scrapy:强大的网络爬虫框架
爬虫·python·scrapy
沈浩(种子思维作者)6 分钟前
量子计算真的需要量子硬件吗?谷歌量子计算机真的是未来计算方向吗?你们相信道AI还是豆包?
人工智能·python·量子计算
电化学仪器白超6 分钟前
计量室自动化系统技术文档编制与动态更新说明
运维·python·嵌入式硬件·自动化
信码由缰11 分钟前
SJF4J 五分钟入门:Java 的实用 JSON 门面
java·python·json
@zulnger11 分钟前
Django 框架(模板)
笔记·python·学习·django
余衫马12 分钟前
Qt for Python:PySide6 入门指南
开发语言·c++·python·qt
python_王子16 分钟前
python_django_跨境电商产品推荐与展示系统[结尾附下载地址]
python·信息可视化·django
好像不对劲21 分钟前
python去除pdf白边
开发语言·python·pdf·kindle
Ethan-D24 分钟前
每日一题#21 二维 DP + 计数类
java·python·算法·leetcode·动态规划
70asunflower27 分钟前
Jupyter Notebook 详细快捷键操作指南
ide·python·jupyter