使用词袋模型(BoW)测试提取图像的特征点和聚类中心

文章目录


环境配置

(1) 导入opencv,参考链接

bash 复制代码
https://blog.csdn.net/Aer_7z/article/details/132612369

(2) 安装numpy

激活虚拟环境的前提下,输入:

bash 复制代码
pip install numpy

(3) 安装sklearn

激活虚拟环境的前提下,输入:

bash 复制代码
pip install scikit-learn

代码测试

在pycharm端运行下列代码(在同一目录下放置一张名为image.jpg的图片)。

bash 复制代码
import cv2
import numpy as np
from sklearn.cluster import KMeans

# 加载图像
image = cv2.imread("image.jpg", 0)  # 使用灰度模式加载图像

# 创建 SIFT 特征提取器对象
sift = cv2.SIFT_create()

# 检测关键点和计算特征描述符
keypoints, descriptors = sift.detectAndCompute(image, None)

# 将特征描述符存储在 features 变量中
features = np.array(descriptors)



# 假设你已经提取了局部特征并将其存储在 features 变量中,features 是一个 N × D 的矩阵,
# 其中 N 是特征数量,D 是每个特征的维度

# 聚类算法的参数设置
num_clusters = 100  # 聚类簇的数量

# 创建聚类算法对象
kmeans = KMeans(n_clusters=num_clusters)

# 执行聚类算法
kmeans.fit(features)

# 获取每个局部特征的聚类标签
labels = kmeans.labels_

# 获取聚类中心
centroids = kmeans.cluster_centers_

# 输出每个特征的聚类标签和聚类中心
for i in range(len(features)):
    print("特征", i, "的聚类标签:", labels[i])

print("\n聚类中心:")
for i in range(num_clusters):
    print("聚类", i, "的中心:", centroids[i])

至此,结束

相关推荐
E_ICEBLUE21 分钟前
Python 实现 PDF 表单域的自动化创建与智能填充
python·pdf·自动化·表单域
YJlio7 小时前
1.7 通过 Sysinternals Live 在线运行工具:不下载也能用的“云端工具箱”
c语言·网络·python·数码相机·ios·django·iphone
l1t7 小时前
在wsl的python 3.14.3容器中使用databend包
开发语言·数据库·python·databend
山塘小鱼儿8 小时前
本地Ollama+Agent+LangGraph+LangSmith运行
python·langchain·ollama·langgraph·langsimth
码说AI8 小时前
python快速绘制走势图对比曲线
开发语言·python
wait_luky9 小时前
python作业3
开发语言·python
Python大数据分析@10 小时前
tkinter可以做出多复杂的界面?
python·microsoft
大黄说说10 小时前
新手选语言不再纠结:Java、Python、Go、JavaScript 四大热门语言全景对比与学习路线建议
java·python·golang
小小张说故事10 小时前
SQLAlchemy 技术入门指南
后端·python