线性代数的学习和整理17:向量空间的基,自然基,基变换等(未完成)

目录

[3 向量空间的基:矩阵的基础/轴](#3 向量空间的基:矩阵的基础/轴)

[3.1 从颜色RGB说起](#3.1 从颜色RGB说起)

[3.2 附属知识](#3.2 附属知识)

[3.3 什么样的向量可以做基?](#3.3 什么样的向量可以做基?)

[3.4 基的分类](#3.4 基的分类)

[3.1.1 不同空间的基---向量组的数量可能不同](#3.1.1 不同空间的基---向量组的数量可能不同)

[3.1.2 自然基](#3.1.2 自然基)

[3.1.3 正交基](#3.1.3 正交基)

[3.1.4 标准正交基](#3.1.4 标准正交基)

[3.1.5 基和向量/矩阵](#3.1.5 基和向量/矩阵)

[3.1.6 基变换](#3.1.6 基变换)

(1)基不变,坐标变换

(2)坐标不变,基变换

[3.1.6 基变换和坐标变换的公式 (待完成)](#3.1.6 基变换和坐标变换的公式 (待完成))


基的英语

3 向量空间的基:矩阵的基础/轴

3.1 从颜色RGB说起

  • RGB颜色大家都明白原理
  • 实际上就是 red, green,blue 这3元色来生成其他颜色
  • RGB颜色有2种数字化 表示方式
  1. 比如 ffffff 000000 ,这个是16进制数字来表示颜色
  2. 使用RGB的向量值来表示其他颜色的,比如 黑色是(0,0,0) ,白色是(255,255,255), 而后面这种方法,就是向量和矩阵的方法
  3. 实际上 RGB 是三原色,也就是 颜色空间/ 可以看成一个3维空间的基
  4. 其中 red 是 green 是 ,blue是
  5. 任意一种颜色都可以写成

3.2 附属知识

1 十六进制

(常用数字0、1、2、3、4、5、6、7、8、9和字母A、B、C、D、E、F(a、b、c、d、e、f)表示,其中:A~F表示10~15,这些称作十六进制数字。)

2 颜色的RGB值

  • RGB值从0-255,实际这个数字代表亮度
  • 总共有256*256*256种,

|----------|---|---|-----------|---|---|---|---|
| 颜色名称 | 红色值 Red || 绿色值 Green | 蓝色值 Blue ||||
| 黑色 | 0 || 0 || 0 |||
| 蓝色 | 0 || 0 || 255 |||
| 绿色 | 0 || 255 || 0 |||
| 青色 | 0 || 255 || 255 |||
| 红色 | 255 || 0 || 0 |||
| 亮紫色(洋红色) | 255 || 0 || 255 |||
| 黄色 | 255 || 255 || 0 |||
| 白色 | 255 || 255 || 255 |||

3.3 什么样的向量可以做基?

**向量空间的基的严格定义:**向量空间中的某组向量 A= {a1,a2.....an} ,这些向量如果是这个向量空间的最大线性无关组,那么这组向量A就是这个空间的一组基。

总结可以做基的特征

A= {a1,a2.....an} 这组向量,或这个向量组

  • 必须是线性无关的。
  • 而且必须是这个空间的最大线性无关组。

理论上,颜色空间的基有无数组,但是很多向量组也不能作为基本

举例

  1. 比如RG这2种颜色构成的向量组,不能称为RGB空间的一组基,因为RG组成不了所有颜色
  2. 比如线性相关的3组向量: 深绿色(0,255,0),标准绿色(0,100,0) 和蓝色(0,0,255)不能作为颜色空间的基的,因为3个线性相关的颜色基,无法组成所有颜色。

3.4 基的分类

3.1.1 不同空间的基---向量组的数量可能不同

  • (a1,a2)是2维的,对应2个基底e1,e2
  • (a1,a2,a3)是3维的,对应3个基底e1,e2
  • (a1,a2,a3... ... an)是n维的, 对应n个基底e1,e2.....en

3.1.2 自然基

  • 自然基本特指这种
  • 自然基,比然是正交基,也是标准正交基

3.1.3 正交基

  • 基这组向量里的每个向量都是互相 垂直/正交的

3.1.4 标准正交基

  • 基这组向量里的每个向量都是互相 垂直/正交的
  • 且长度都为1
  • 标准正交基有很多,并不只是只有自然基那一组!

3.1.5 基和向量/矩阵

  • 比如一个向量(3,2,5) 就可以认为是,这个向量的3个元素分别在3个基上的长度/伸缩度
  1. 向量(3,2,5) 在第1个基,(1,0,0) 上的长度/伸缩度是3,
  2. 向量(3,2,5) 在第2个基,(0,1,0) 上的长度/伸缩度是2,
  3. 向量(3,2,5) 在第3个基,(0,0,1) 上的长度/伸缩度是5,

3.1.6 基变换

  • 矩阵的 基 / 基底 是可以改变的
  • 实际上Ax=y 就可以看作 基变换
  • Ax=y 有两种方法,要么坐标变,要么坐标不变,基变化

(1)基不变,坐标变换

  • 假设我们有A是e1,e2,e3 等 自然基下的向量x
  • 计算 A*x=y
  • 一般我们计算 A*x=y 其实都是将 向量x 经过矩阵A变换后,生成了新的向量y,而新的向量y实际就是原向量的坐标发生了变化,其仍然是e1,e2。。。等 自然基下的向量y

(2)坐标不变,基变换

  • 假设我们有A是e1,e2。。。等自然基下的向量x
  • 而A的列向量分别是 α1,α2 ....
  • 计算 A*x=y
  • 我们可以保持x向量的坐标还是老的,但是基不再用e1,e2。。。等,而是用A的列向量α1,α2 ....作为新的基.

3.1.6 基变换和坐标变换的公式 (待完成)

相关推荐
Hi2024021713 小时前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
君名余曰正则20 小时前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM21 小时前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值
阿巴Jun1 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
scx_link2 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX12 天前
矩阵的对称,反对称分解
线性代数·矩阵
郝学胜-神的一滴2 天前
基于OpenGL封装摄像机类:视图矩阵与透视矩阵的实现
c++·qt·线性代数·矩阵·游戏引擎·图形渲染
十子木2 天前
线性方程求解器的矩阵分裂
线性代数·矩阵
人机与认知实验室3 天前
人机环境系统智能矩阵理论
线性代数·矩阵
fFee-ops4 天前
73. 矩阵置零
线性代数·矩阵