基于YOLO v5的病虫害检测与优化

《A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5》

  • a new point-line distance loss function is proposed to reduce redundant computations and shorten detection time
  • the attention module is added to the network for adaptive attention, which can focus on the target object in the channel and space dimensions to improve the detection and identification rates.
  • the mixup online data augmentation algorithm is added to expand the online training set, which increases the model robustness and prevents over-fitting.

《Real‑time and effective detection of agricultural pest using an improved YOLOv5 network》

  • a lightweight feature extraction network GhostNet is adopted as the backbone and an efficient channel attention(ECA) mechanism is introduced to enhance feature extraction
  • introduce BiFPN and add high-resolution feature map C2 and horizontal residual connections to it to enhance the expression of small pest features.
  • We propose feature fusion with the attentional multiple receptive fields (FFARF) module, which dynamically assigns weights to each receptive field to highlight their unequal contribution to the global information after obtaining multiple receptive fields.

相关推荐
格林威14 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
lxmyzzs15 小时前
【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程
人工智能·神经网络·yolo·目标检测·计算机视觉
格林威18 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现轮船检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测
Coovally AI模型快速验证20 小时前
避开算力坑!无人机桥梁检测场景下YOLO模型选型指南
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机
超龄超能程序猿1 天前
图片查重从设计到实现(4)图片向量化存储-Milvus 单机版部署
人工智能·yolo·机器学习
格林威1 天前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现持械检测(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
sanzk2 天前
yolo--qt可视化开发
yolo
停走的风2 天前
Yolo底层原理学习(V1~V3)(第一篇)
人工智能·深度学习·神经网络·学习·yolo
北京地铁1号线3 天前
YOLO12论文阅读:Attention-Centric Real-Time Object Detectors
论文阅读·yolo·目标检测
虚假程序设计3 天前
海康工业三相机联动串口触发系统:从 0 到 1 的踩坑笔记
数码相机·yolo·机器学习