基于YOLO v5的病虫害检测与优化

《A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5》

  • a new point-line distance loss function is proposed to reduce redundant computations and shorten detection time
  • the attention module is added to the network for adaptive attention, which can focus on the target object in the channel and space dimensions to improve the detection and identification rates.
  • the mixup online data augmentation algorithm is added to expand the online training set, which increases the model robustness and prevents over-fitting.

《Real‑time and effective detection of agricultural pest using an improved YOLOv5 network》

  • a lightweight feature extraction network GhostNet is adopted as the backbone and an efficient channel attention(ECA) mechanism is introduced to enhance feature extraction
  • introduce BiFPN and add high-resolution feature map C2 and horizontal residual connections to it to enhance the expression of small pest features.
  • We propose feature fusion with the attentional multiple receptive fields (FFARF) module, which dynamically assigns weights to each receptive field to highlight their unequal contribution to the global information after obtaining multiple receptive fields.

相关推荐
工程师老罗7 小时前
YOLOv1数据增强
人工智能·yolo
weixin_468466857 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
智驱力人工智能17 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
工程师老罗17 小时前
YOLOv1 核心结构解析
yolo
Lun3866buzha17 小时前
YOLOv10-BiFPN融合:危险物体检测与识别的革新方案,从模型架构到实战部署全解析
yolo
Katecat9966318 小时前
YOLOv8-MambaOut在电子元器件缺陷检测中的应用与实践_1
yolo
工程师老罗19 小时前
YOLOv1 核心知识点笔记
笔记·yolo
工程师老罗1 天前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
学习3人组1 天前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior1 天前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪