基于YOLO v5的病虫害检测与优化

《A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5》

  • a new point-line distance loss function is proposed to reduce redundant computations and shorten detection time
  • the attention module is added to the network for adaptive attention, which can focus on the target object in the channel and space dimensions to improve the detection and identification rates.
  • the mixup online data augmentation algorithm is added to expand the online training set, which increases the model robustness and prevents over-fitting.

《Real‑time and effective detection of agricultural pest using an improved YOLOv5 network》

  • a lightweight feature extraction network GhostNet is adopted as the backbone and an efficient channel attention(ECA) mechanism is introduced to enhance feature extraction
  • introduce BiFPN and add high-resolution feature map C2 and horizontal residual connections to it to enhance the expression of small pest features.
  • We propose feature fusion with the attentional multiple receptive fields (FFARF) module, which dynamically assigns weights to each receptive field to highlight their unequal contribution to the global information after obtaining multiple receptive fields.

相关推荐
贤小二AI1 天前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
zy_destiny1 天前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
卧式纯绿2 天前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
HABuo2 天前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
AdaCoding2 天前
YOLOv8架构详解
yolo·网络结构图
云卷云舒___________2 天前
【Ultralytics YOLO COCO 评估脚本 | 获得COCO评价指标】
yolo·coco·ultralytics
plmm烟酒僧3 天前
在 RK3588 多线程推理 YOLO 时,同时开启硬件解码和 RGA 加速的性能分析
yolo·rkmpp·瑞芯微·硬件加速·rga·色彩空间转换
HABuo3 天前
【YOLOv8】YOLOv8改进系列(11)----替换主干网络之MobileNetV4
人工智能·深度学习·yolo·目标检测·计算机视觉
Kai HVZ4 天前
《深度学习》——yolov4详解
人工智能·深度学习·yolo