基于YOLO v5的病虫害检测与优化

《A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5》

  • a new point-line distance loss function is proposed to reduce redundant computations and shorten detection time
  • the attention module is added to the network for adaptive attention, which can focus on the target object in the channel and space dimensions to improve the detection and identification rates.
  • the mixup online data augmentation algorithm is added to expand the online training set, which increases the model robustness and prevents over-fitting.

《Real‑time and effective detection of agricultural pest using an improved YOLOv5 network》

  • a lightweight feature extraction network GhostNet is adopted as the backbone and an efficient channel attention(ECA) mechanism is introduced to enhance feature extraction
  • introduce BiFPN and add high-resolution feature map C2 and horizontal residual connections to it to enhance the expression of small pest features.
  • We propose feature fusion with the attentional multiple receptive fields (FFARF) module, which dynamically assigns weights to each receptive field to highlight their unequal contribution to the global information after obtaining multiple receptive fields.

相关推荐
MIXLLRED36 分钟前
YOLO学习——训练进阶和预测评价指标
深度学习·学习·yolo
王彦臻1 小时前
YOLOv3 技术总结
深度学习·yolo·目标跟踪
dlraba8023 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
szxinmai主板定制专家5 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
叶凡要飞13 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
FL162386312920 小时前
无人机视角河道多目标垃圾检测数据集VOC+YOLO格式1736张6类别
yolo·无人机
XIAO·宝21 小时前
深度学习------YOLOV1和YOLOV2
人工智能·深度学习·yolo
禾昂.1 天前
从 YOLO V1 到 V2:目标检测领域的一次关键技术迭代
yolo·目标检测·目标跟踪
Python图像识别1 天前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
OAFD.2 天前
YOLOv3 详解:核心改进、网络架构与目标检测实践
网络·yolo·目标检测