基于YOLO v5的病虫害检测与优化

《A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5》

  • a new point-line distance loss function is proposed to reduce redundant computations and shorten detection time
  • the attention module is added to the network for adaptive attention, which can focus on the target object in the channel and space dimensions to improve the detection and identification rates.
  • the mixup online data augmentation algorithm is added to expand the online training set, which increases the model robustness and prevents over-fitting.

《Real‑time and effective detection of agricultural pest using an improved YOLOv5 network》

  • a lightweight feature extraction network GhostNet is adopted as the backbone and an efficient channel attention(ECA) mechanism is introduced to enhance feature extraction
  • introduce BiFPN and add high-resolution feature map C2 and horizontal residual connections to it to enhance the expression of small pest features.
  • We propose feature fusion with the attentional multiple receptive fields (FFARF) module, which dynamically assigns weights to each receptive field to highlight their unequal contribution to the global information after obtaining multiple receptive fields.

相关推荐
蹦蹦跳跳真可爱5898 小时前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
蹦蹦跳跳真可爱5899 小时前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
孤独野指针*P17 小时前
释放模型潜力:浅谈目标检测微调技术(Fine-tuning)
人工智能·深度学习·yolo·计算机视觉·目标跟踪
蹦蹦跳跳真可爱58917 小时前
Python----目标检测(YOLO简介)
人工智能·python·yolo·目标检测·计算机视觉·目标跟踪
蹦蹦跳跳真可爱58918 小时前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪
Coovally AI模型快速验证19 小时前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
Mrs.Gril1 天前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
FL16238631292 天前
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
yolo
Coovally AI模型快速验证3 天前
基于YOLO-NAS-Pose的无人机象群姿态估计:群体行为分析的突破
人工智能·神经网络·算法·yolo·目标检测·无人机·cocos2d
凌康ACG3 天前
易语言使用OCR
c++·yolo·c#·ocr·易语言