削峰从本质上来说就是更多地延缓用户请求,以及层层过滤用户的访问需求,遵从"最后落地到数据库的请求数要尽量少"的原则。
1.消息队列解决削峰
要对流量进行削峰,最容易想到的解决方案就是用消息队列来缓冲瞬时流量,把同步的直接调用转换成异步的间接推送,中间通过一个队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去。
消息队列中间件主要解决应用耦合,异步消息, 流量削锋等问题。常用消息队列系统:目前在生产环境,使用较多的消息队列有 ActiveMQ、RabbitMQ、 ZeroMQ、Kafka、MetaMQ、RocketMQ 等。
在这里,消息队列就像"水库"一样,拦蓄上游的洪水,削减进入下游河道的洪峰流量,从而达到减免洪水灾害的目的。
2.流量削峰漏斗:层层削峰
针对秒杀场景还有一种方法,就是对请求进行分层过滤,从而过滤掉一些无效的请求。
分层过滤其实就是采用"漏斗"式设计来处理请求的,如下图所示
这样就像漏斗一样,尽量把数据量和请求量一层一层地过滤和减少了。
1)分层过滤的核心思想
通过在不同的层次尽可能地过滤掉无效请求。
通过CDN过滤掉大量的图片,静态资源的请求。
再通过类似Redis这样的分布式缓存,过滤请求等就是典型的在上游拦截读请求。
2)分层过滤的基本原则
对写数据进行基于时间的合理分片,过滤掉过期的失效请求。
对写请求做限流保护,将超出系统承载能力的请求过滤掉。
涉及到的读数据不做强一致性校验,减少因为一致性校验产生瓶颈的问题。
对写数据进行强一致性校验,只保留最后有效的数据。
最终,让"漏斗"最末端(数据库)的才是有效请求。例如:当用户真实达到订
单和支付的流程,这个是需要数据强一致性的。
总结
1.对于秒杀这样的高并发场景业务,最基本的原则就是将请求拦截在系统上游,降低下游压力。如果不在前端拦截很可能造成数据库(mysql、oracle等)读写锁冲突,甚至导致死锁,最终还有可能出现雪崩等场景。
2.划分好动静资源,静态资源使用CDN进行服务分发。
3.充分利用缓存(redis等):增加QPS,从而加大整个集群的吞吐量。
4.高峰值流量是压垮系统很重要的原因,所以需要Kafka等消息队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去。