下面是实践百度飞桨上面的pm2.5分类项目_logistic regression相关

part1:数据的引入,和前一个linear regression基本是一样

part2:数据解析------也就是数据的"规格化"

首先,打算用dataMat[]和labelMat[]数据存储feature和label,并且文件变量fr

然后,是这个for line in fr.readlines()循环,就是逐行的读取字符串到line中,

比如上面的那个data.txt中的数据,一行有3个数据用"\t"制表符进行分隔,结果就是这个3个数据作为curLine[]这个一维数组中的3个数据,

dataMat,存储的是[1.0,curline[0],curline[1]]作为元素的数组,总共15组

labelMat,存储的是curline[2]作为元素的数组,总共15组

part3:定义那个sigmoid function

part4:通过输入dataMat 和 labelMat作为 训练集,通过线性gradien descent计算出分割线的斜率

(1)具体的过程应该就是 如何通过训练集中的数据 计算出对应的 logistic regression的分割线的问题,详细可以参考李宏毅老师的 logistic regression相关的代码

(2)里面的alpha是学习率,可以通过设置不同的学习率和循环次数观察结果

part5:绘制出 需要测试的点的数据 并将label用颜色标出, 最后画出由训练集得到的 分割线

part6:调用上述定义的函数,并且得到最终的结果:

其实这个代码和data.txt给的一点也不好,

(1)它只有训练集,最终的结果也只是在训练集上做的测试

(2)data.txt看着有15组数据,其实只有5组,都是重复的,所以最终的图只有5个点

相关推荐
乐呦刘、1 小时前
nature communications论文 解读
人工智能·深度学习·机器学习
自不量力的A同学5 小时前
微软发布「AI Shell」
人工智能·microsoft
一点一木5 小时前
AI与数据集:从零基础到全面应用的深度解析(超详细教程)
人工智能·python·tensorflow
花生糖@5 小时前
OpenCV图像基础处理:通道分离与灰度转换
人工智能·python·opencv·计算机视觉
2zcode5 小时前
基于YOLOv8深度学习的智慧农业棉花采摘状态检测与语音提醒系统(PyQt5界面+数据集+训练代码)
人工智能·深度学习·yolo
秀儿还能再秀6 小时前
神经网络(系统性学习四):深度学习——卷积神经网络(CNN)
人工智能·深度学习·机器学习·cnn·学习笔记
开MINI的工科男7 小时前
【笔记】自动驾驶预测与决策规划_Part7_数据驱动的预测方法
人工智能·自动驾驶·端到端·预测与决策·多模态预测
蒋会全7 小时前
第2.3 AI文本—prompt入门
人工智能·prompt·aigc
Evaporator Core8 小时前
门控循环单元(GRU)与时间序列预测应用
人工智能·深度学习·gru
是Yu欸8 小时前
【Github】如何使用Git将本地项目上传到Github
人工智能·git·深度学习·github·论文笔记·cvpr