c++ opencv将彩色图像按连通域区分

要将彩色图像按连通域区分,您可以使用 OpenCV 中的 cv::connectedComponents 函数。

下面是一个简单的示例代码,说明如何使用 cv::connectedComponents 函数来检测并标记图像中的连通域:

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

int main()
{
    // 读取彩色图像
    cv::Mat image = cv::imread("image.jpg");

    // 将图像转换为灰度
    cv::Mat grayImage;
    cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY);

    // 使用二值化将图像转换为二进制图像
    cv::Mat binaryImage;
    cv::threshold(grayImage, binaryImage, 0, 255, cv::THRESH_BINARY_INV | cv::THRESH_OTSU);

    // 定义连通域标记图像
    cv::Mat labels;

    // 应用连通域检测算法
    int numLabels = cv::connectedComponents(binaryImage, labels);

    // 创建随机颜色向量,用于绘制每个连通域
    std::vector<cv::Vec3b> colors(numLabels);
    colors[0] = cv::Vec3b(0, 0, 0); // 背景设置为黑色

    for (int i = 1; i < numLabels; i++)
    {
        colors[i] = cv::Vec3b(rand() % 256, rand() % 256, rand() % 256);
    }

    // 将每个连通域根据其标签值着色
    cv::Mat connectedComponentsImage(image.size(), CV_8UC3);
    for (int y = 0; y < image.rows; y++)
    {
        for (int x = 0; x < image.cols; x++)
        {
            int label = labels.at<int>(y, x);
            cv::Vec3b &color = connectedComponentsImage.at<cv::Vec3b>(y, x);

            color = colors[label];
        }
    }

    // 显示原始图像和标记的连通域图像
    cv::imshow("Original Image", image);
    cv::imshow("Connected Components", connectedComponentsImage);
    cv::waitKey(0);

    return 0;
}

这段代码首先读取彩色图像,然后将其转换为灰度图像。接下来,使用 cv::threshold 函数将灰度图像二值化,生成二进制图像。然后,使用 cv::connectedComponents 函数应用连通域检测算法。最后,根据每个连通域的标签值,使用随机颜色向量对每个连通域进行着色。最后,将原始图像和标记的连通域图像显示出来。

您可以根据您的需求修改此示例代码。

8/29/2023, 2:06:42 PM

相关推荐
CoovallyAIHub22 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub24 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
lxmyzzs28 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
汉汉汉汉汉42 分钟前
C++11新特性详解:从列表初始化到线程库
c++
楼田莉子2 小时前
C++算法题目分享:二叉搜索树相关的习题
数据结构·c++·学习·算法·leetcode·面试
大锦终3 小时前
【算法】模拟专题
c++·算法
方传旺3 小时前
C++17 std::optional 深拷贝 vs 引用:unordered_map 查询大对象性能对比
c++
Dontla3 小时前
Makefile介绍(Makefile教程)(C/C++编译构建、自动化构建工具)
c语言·c++·自动化
何妨重温wdys4 小时前
矩阵链相乘的最少乘法次数(动态规划解法)
c++·算法·矩阵·动态规划
重启的码农4 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络