Python综合案例(基本地图使用)

一、基本地图的使用

基本代码:

python 复制代码
"""
演示地图可视化的基本使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

# 准备地图对象
map = Map()
# 准备数据
data = [
    ("北京", 99),
    ("上海", 199),
    ("湖南", 299),
    ("台湾", 399),
    ("广东", 499)
]
# 添加数据
map.add("测试地图", data, "china")

# 设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99", "color": "#FF6666"},
            {"min": 100, "max": 500, "label": "100-500", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

基本效果:

二、全国疫情地图的使用

代码实现:

python 复制代码
"""
演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取数据文件
f = open("D:/疫情.txt", "r", encoding="UTF-8")
data = f.read()     # 全部数据
# 关闭文件
f.close()
# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data)        # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []      # 绘图需要用的数据列表
for province_data in province_data_list:
    province_name = province_data["name"]                   # 省份名称
    province_confirm = province_data["total"]["confirm"]    # 确诊人数
    data_list.append((province_name, province_confirm))


# 创建地图对象
map = Map()
# 添加数据
map.add("各省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,           # 是否显示
        is_piecewise=True,      # 是否分段
        pieces=[
            {"min": 1, "max": 99, "lable": "1~99人", "color": "#CCFFFF"},
            {"min": 100, "max": 999, "lable": "100~9999人", "color": "#FFFF99"},
            {"min": 1000, "max": 4999, "lable": "1000~4999人", "color": "#FF9966"},
            {"min": 5000, "max": 9999, "lable": "5000~99999人", "color": "#FF6666"},
            {"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
            {"min": 100000, "lable": "100000+", "color": "#990033"},
        ]
    )
)
# 绘图
map.render("全国疫情地图.html"

三、河南省地图

代码实现:

python 复制代码
"""
演示河南省疫情地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取文件
f = open("D:/疫情.txt", "r", encoding="UTF-8")
data = f.read()
# 关闭文件
f.close()
# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)
# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]

# 准备数据为元组并放入list
data_list = []
for city_data in cities_data:
    city_name = city_data["name"] + "市"
    city_confirm = city_data["total"]["confirm"]
    data_list.append((city_name, city_confirm))

# 手动添加济源市的数据
data_list.append(("济源市", 5))

# 构建地图
map = Map()
map.add("河南省疫情分布", data_list, "河南")
# 设置全局选项
map.set_global_opts(
    title_opts=TitleOpts(title="河南省疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,           # 是否显示
        is_piecewise=True,      # 是否分段
        pieces=[
            {"min": 1, "max": 99, "lable": "1~99人", "color": "#CCFFFF"},
            {"min": 100, "max": 999, "lable": "100~9999人", "color": "#FFFF99"},
            {"min": 1000, "max": 4999, "lable": "1000~4999人", "color": "#FF9966"},
            {"min": 5000, "max": 9999, "lable": "5000~99999人", "color": "#FF6666"},
            {"min": 10000, "max": 99999, "lable": "10000~99999人", "color": "#CC3333"},
            {"min": 100000, "lable": "100000+", "color": "#990033"},
        ]
    )
)

# 绘图
map.render("河南省疫情地图.html")

基本效果:

相关推荐
Amo Xiang19 分钟前
《100天精通Python——基础篇 2025 第5天:巩固核心知识,选择题实战演练基础语法》
python·选择题·基础语法
江梦寻28 分钟前
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
开发语言·后端·python·macos·架构·策略模式
霖檬ing31 分钟前
Python——MySQL远程控制
开发语言·python·mysql
miniwa35 分钟前
Python编程精进:CSV 模块
python
老胖闲聊8 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1188 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之8 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
lyaihao9 小时前
使用python实现奔跑的线条效果
python·绘图
ai大师10 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
小小爬虾10 小时前
关于datetime获取时间的问题
python