GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

本文是LLM系列文章,针对《GREASELM: GRAPH REASONING ENHANCED

LANGUAGE MODELS FOR QUESTION ANSWERING》的翻译。

GREASELM:图推理增强的问答语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法:GREASELM](#3 提出的方法:GREASELM)
  • [4 实验设置](#4 实验设置)
  • [5 实验结果](#5 实验结果)
  • [6 结论](#6 结论)

摘要

回答关于文本叙事的复杂问题需要对所陈述的上下文和作为其基础的世界知识进行推理。然而,作为大多数现代QA系统的基础的预训练语言模型(LM)并不能有力地表示概念之间的潜在关系,而这是推理所必需的。虽然知识图谱(KG)经常被用来用世界知识的结构化表示来扩充LMs,但如何有效地融合和推理KG表示和语言上下文仍然是一个悬而未决的问题,因为语言上下文提供了情境约束和细微差别。在这项工作中,我们提出了GREASELM,这是一种新的模型,它在多层模态交互操作上融合了来自预训练的LM和图神经网络的编码表示。来自两种模式的信息传播到另一种模式,允许语言上下文表示以结构化的世界知识为基础,并允许上下文中的语言细微差别(例如否定、对冲)告知知识的图形表示。我们在常识推理(即CommonsenseQA、OpenbookQA)和医学问答(即MedQA USMLE)领域的三个基准测试上的结果表明,GREASELM可以更可靠地回答需要对情境约束和结构化知识进行推理的问题,甚至优于8倍。

1 引言

2 相关工作

3 提出的方法:GREASELM

4 实验设置

5 实验结果

6 结论

在本文中,我们介绍了GREASELM,这是一种新的模型,通过语言模型和知识图谱中的知识之间的联合信息交换,实现交互式融合。实验结果表明,在来自多个领域(常识和医学)的标准数据集上,与先前的KG+LM和仅LM基线相比,性能优越。我们的分析表明,改进了能力建模问题,表现出文本的细微差别,如否定和对冲。

相关推荐
VertGrow AI销冠1 天前
AI在吸引客户和引流方面的实际效果和应用研究
人工智能
快乐非自愿1 天前
AI低代码与智改数转:破除伪命题,重构技术落地逻辑
人工智能·低代码·重构
新加坡内哥谈技术1 天前
大型语言模型与软件开发职业
人工智能
大厂技术总监下海1 天前
为Claude注入“执行力”:Awesome Claude Skills——打开AI助手的开关矩阵
人工智能·数据分析·开源
一个帅气昵称啊1 天前
基于 .NET 的 AI 流式输出实现AgentFramework+SignalR
人工智能·.net
Allen_LVyingbo1 天前
构建医疗AI数据集建设平台:Go语言工程方案详解
开发语言·人工智能·自然语言处理·golang·知识图谱·健康医疗
qyr67891 天前
全球无人机市场发展趋势分析
大数据·人工智能·无人机·市场分析·市场报告
CCPC不拿奖不改名1 天前
Git 核心操作命令
人工智能·git·python·rnn·自然语言处理·josn
testpassportcn1 天前
AWS AIF-C01 認證介紹|AWS Certified AI Foundations 全面解析
人工智能