GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

本文是LLM系列文章,针对《GREASELM: GRAPH REASONING ENHANCED

LANGUAGE MODELS FOR QUESTION ANSWERING》的翻译。

GREASELM:图推理增强的问答语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法:GREASELM](#3 提出的方法:GREASELM)
  • [4 实验设置](#4 实验设置)
  • [5 实验结果](#5 实验结果)
  • [6 结论](#6 结论)

摘要

回答关于文本叙事的复杂问题需要对所陈述的上下文和作为其基础的世界知识进行推理。然而,作为大多数现代QA系统的基础的预训练语言模型(LM)并不能有力地表示概念之间的潜在关系,而这是推理所必需的。虽然知识图谱(KG)经常被用来用世界知识的结构化表示来扩充LMs,但如何有效地融合和推理KG表示和语言上下文仍然是一个悬而未决的问题,因为语言上下文提供了情境约束和细微差别。在这项工作中,我们提出了GREASELM,这是一种新的模型,它在多层模态交互操作上融合了来自预训练的LM和图神经网络的编码表示。来自两种模式的信息传播到另一种模式,允许语言上下文表示以结构化的世界知识为基础,并允许上下文中的语言细微差别(例如否定、对冲)告知知识的图形表示。我们在常识推理(即CommonsenseQA、OpenbookQA)和医学问答(即MedQA USMLE)领域的三个基准测试上的结果表明,GREASELM可以更可靠地回答需要对情境约束和结构化知识进行推理的问题,甚至优于8倍。

1 引言

2 相关工作

3 提出的方法:GREASELM

4 实验设置

5 实验结果

6 结论

在本文中,我们介绍了GREASELM,这是一种新的模型,通过语言模型和知识图谱中的知识之间的联合信息交换,实现交互式融合。实验结果表明,在来自多个领域(常识和医学)的标准数据集上,与先前的KG+LM和仅LM基线相比,性能优越。我们的分析表明,改进了能力建模问题,表现出文本的细微差别,如否定和对冲。

相关推荐
wenzhangli72 小时前
深度解析Ooder架构:A2UI时代全栈设计的四大核心思考
大数据·人工智能
m0_462605222 小时前
第N11周:seq2seq翻译实战-Pytorch复现
人工智能·pytorch·python
LiFileHub2 小时前
ISO/IEC TR 29119-11:2020中文版
人工智能
光影34152 小时前
调用阿里的通义千问3-VL-Flash 系统提示词和用户提示词使用的token量比较
人工智能
啊阿狸不会拉杆2 小时前
《数字图像处理》实验3-频率域处理方法
图像处理·人工智能·算法·计算机视觉·数字图像处理
哥本哈士奇2 小时前
使用Gradio构建AI前端 - RAG召回测试
前端·人工智能
赋创小助手2 小时前
超微SYS-821GE-TNHR深度测评:8卡 NVIDIA H200 风冷 AI 服务器
运维·服务器·人工智能·深度学习·计算机视觉·语言模型·自然语言处理
xwz小王子2 小时前
Mini3DV 2025 | 观点总结:具身智能前沿与展望
人工智能·3d
学术小白人2 小时前
JPCS出版| 往届检索可查 | 第四届机械工程与先进制造智能化技术研讨会(MEAMIT 2026)
大数据·人工智能·搜索引擎·能源·制造·ei会议·rdlink研发家
微爱帮监所写信寄信2 小时前
6G+AI:重构微爱帮监狱写信寄信小程序的特殊通信未来
人工智能·小程序·重构·6g·监狱信件·监狱系统·服刑人员子女