GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

本文是LLM系列文章,针对《GREASELM: GRAPH REASONING ENHANCED

LANGUAGE MODELS FOR QUESTION ANSWERING》的翻译。

GREASELM:图推理增强的问答语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法:GREASELM](#3 提出的方法:GREASELM)
  • [4 实验设置](#4 实验设置)
  • [5 实验结果](#5 实验结果)
  • [6 结论](#6 结论)

摘要

回答关于文本叙事的复杂问题需要对所陈述的上下文和作为其基础的世界知识进行推理。然而,作为大多数现代QA系统的基础的预训练语言模型(LM)并不能有力地表示概念之间的潜在关系,而这是推理所必需的。虽然知识图谱(KG)经常被用来用世界知识的结构化表示来扩充LMs,但如何有效地融合和推理KG表示和语言上下文仍然是一个悬而未决的问题,因为语言上下文提供了情境约束和细微差别。在这项工作中,我们提出了GREASELM,这是一种新的模型,它在多层模态交互操作上融合了来自预训练的LM和图神经网络的编码表示。来自两种模式的信息传播到另一种模式,允许语言上下文表示以结构化的世界知识为基础,并允许上下文中的语言细微差别(例如否定、对冲)告知知识的图形表示。我们在常识推理(即CommonsenseQA、OpenbookQA)和医学问答(即MedQA USMLE)领域的三个基准测试上的结果表明,GREASELM可以更可靠地回答需要对情境约束和结构化知识进行推理的问题,甚至优于8倍。

1 引言

2 相关工作

3 提出的方法:GREASELM

4 实验设置

5 实验结果

6 结论

在本文中,我们介绍了GREASELM,这是一种新的模型,通过语言模型和知识图谱中的知识之间的联合信息交换,实现交互式融合。实验结果表明,在来自多个领域(常识和医学)的标准数据集上,与先前的KG+LM和仅LM基线相比,性能优越。我们的分析表明,改进了能力建模问题,表现出文本的细微差别,如否定和对冲。

相关推荐
YiWait几秒前
机器学习导论习题解答
人工智能·python·算法
电商API&Tina1 分钟前
【电商API】淘宝/天猫拍立淘(按图搜索商品)API 全解析
大数据·开发语言·数据库·人工智能·json·图搜索算法
五度易链-区域产业数字化管理平台3 分钟前
技术深一度|五度易链如何通过“AI+大数据”深度融合提升治理精准效能?
大数据·人工智能
俊哥V5 分钟前
AI一周事件(2026年01月21日-01月27日)
人工智能·ai
云边云科技_云网融合8 分钟前
下单、收银不中断,负载均衡是零售系统平稳运行的基石
大数据·网络·人工智能·安全
小宇的天下9 分钟前
Cadence allegro---Cross section generater
人工智能
雷焰财经9 分钟前
出海新航路:宇信科技以AI与生态协同,赋能全球金融智能化
人工智能·科技·金融
AndrewHZ11 分钟前
【图像处理与ISP技术】图像质量评价领域经典算法一览
图像处理·人工智能·深度学习·算法·机器学习·图像质量评价·iqa
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能