【ROS 05】ROS常用组件

在ROS中内置一些比较实用的工具,通过这些工具可以方便快捷的实现某个功能或调试程序,从而提高开发效率,本章主要介绍ROS中内置的如下组件:

  • TF坐标变换,实现不同类型的坐标系之间的转换;
  • rosbag 用于录制ROS节点的执行过程并可以重放该过程;
  • rqt 工具箱,集成了多款图形化的调试工具。

本章预期达成的学习目标:

  • 了解 TF 坐标变换的概念以及应用场景;
  • 能够独立完成TF案例:小乌龟跟随;
  • 可以使用 rosbag 命令或编码的形式实现录制与回放;
  • 能够熟练使用rqt中的图形化工具。

**案例演示:**小乌龟跟随实现,该案例是ros中内置案例,终端下键入启动命令

roslaunch turtle_tf2 turtle_tf2_demo_cpp.launchroslaunch turtle_tf2 turtle_tf2_demo.launch

键盘可以控制一只乌龟运动,另一只跟随运动。

1 TF坐标变换

机器人系统上,有多个传感器,如激光雷达、摄像头等,有的传感器是可以感知机器人周边的物体方位(或者称之为:坐标,横向、纵向、高度的**距离信息)**的,以协助机器人定位障碍物,可以直接将物体相对该传感器的方位信息,等价于物体相对于机器人系统或机器人其它组件的方位信息吗?显示是不行的,这中间需要一个转换过程。更具体描述如下:

场景1:雷达与小车

现有一移动式机器人底盘,在底盘上安装了一雷达,雷达相对于底盘的偏移量已知,现雷达检测到一障碍物信息,获取到坐标分别为(x,y,z),该坐标是以雷达为参考系的,如何将这个坐标转换成以小车为参考系的坐标呢?

场景2:现有一带机械臂的机器人(比如:PR2)需要夹取目标物,当前机器人头部摄像头可以探测到目标物的坐标(x,y,z),不过该坐标是以摄像头为参考系的,而实际操作目标物的是机械臂的夹具,当前我们需要将该坐标转换成相对于机械臂夹具的坐标,这个过程如何实现?

当然,根据我们高中学习的知识,在明确了不同坐标系之间的的相对关系,就可以实现任何坐标点在不同坐标系之间的转换,但是该计算实现是较为常用的,且算法也有点复杂,因此在 ROS 中直接封装了相关的模块: 坐标变换(TF)

1.1 概念

**tf:**TransForm Frame,坐标变换

坐标系: ROS 中是通过坐标系统开标定物体的,确切的将是通过右手坐标系来标定的。

1.2 作用

在 ROS 中用于实现不同坐标系之间的点或向量的转换。

1.3 案例

**小乌龟跟随案例:**如本章引言部分演示。

1.4 说明

在ROS中坐标变换最初对应的是tf,不过在 hydro 版本开始, tf 被弃用,迁移到 tf2,后者更为简洁高效,tf2对应的常用功能包有:

++tf2_geometry_msgs:可以将ROS消息转换成tf2消息++。

++tf2: 封装了坐标变换的常用消息++。

++tf2_ros:为tf2提供了roscpp和rospy绑定,封装了坐标变换常用的API。++

另请参考:

1.1 坐标msg消息

订阅发布模型中数据载体 msg 是一个重要实现,首先需要了解一下,在坐标转换实现中常用的 msg:geometry_msgs/TransformStampedgeometry_msgs/PointStamped

++前者用于传输坐标系相关位置信息,后者用于传输某个坐标系内坐标点的信息。++在坐标变换中,频繁的需要使用到坐标系的相对关系以及坐标点信息。

1.1.1 geometry_msgs/TransformStamped

命令行键入:rosmsg info geometry_msgs/TransformStamped

std_msgs/Header header                     #头信息
  uint32 seq                                #|-- 序列号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 坐标 ID
string child_frame_id                    #子坐标系的 id
geometry_msgs/Transform transform        #坐标信息
  geometry_msgs/Vector3 translation        #偏移量
    float64 x                                #|-- X 方向的偏移量
    float64 y                                #|-- Y 方向的偏移量
    float64 z                                #|-- Z 方向上的偏移量
  geometry_msgs/Quaternion rotation        #四元数
    float64 x                                
    float64 y                                
    float64 z                                
    float64 w

四元数用于表示坐标的相对姿态

1.1.2 geometry_msgs/PointStamped

命令行键入:rosmsg info geometry_msgs/PointStamped

std_msgs/Header header                    #头
  uint32 seq                                #|-- 序号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 所属坐标系的 id
geometry_msgs/Point point                #点坐标
  float64 x                                    #|-- x y z 坐标
  float64 y
  float64 z

另请参考:

1.2 静态坐标变换

所谓静态坐标变换,是指两个坐标系之间的相对位置是固定的。

需求描述:

现有一机器人模型,核心构成包含主体与雷达,各对应一坐标系,坐标系的原点分别位于主体与雷达的物理中心,已知雷达原点相对于主体原点位移关系如下: x 0.2 y0.0 z0.5。当前雷达检测到一障碍物,在雷达坐标系中障碍物的坐标为 (2.0 3.0 5.0),请问,该障碍物相对于主体的坐标是多少?

结果演示:

实现分析:

  1. 坐标系相对关系,可以通过发布方发布
  2. 订阅方,订阅到发布的坐标系相对关系,再传入坐标点信息(可以写死),然后借助于 tf 实现坐标变换,并将结果输出

**实现流程:**C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 编写发布方实现
  3. 编写订阅方实现
  4. 执行并查看结果

方案A:C++实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.发布方

cpp 复制代码
/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/


// 1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();
    ts.header.frame_id = "base_link";
    //----设置子级坐标系
    ts.child_frame_id = "laser";
    //----设置子级相对于父级的偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,0);
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

配置文件此处略。

3.订阅方

cpp 复制代码
/*  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,转换成父级坐标系中的坐标点

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 TF 订阅节点
        4.生成一个坐标点(相对于子级坐标系)
        5.转换坐标点(相对于父级坐标系)
        6.spin()
*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "laser";
        point_laser.header.stamp = ros::Time::now();
        point_laser.point.x = 1;
        point_laser.point.y = 2;
        point_laser.point.z = 7.3;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"base_link");
            ROS_INFO("转换后的数据:(%.2f,%.2f,%.2f),参考的坐标系是:",point_base.point.x,point_base.point.y,point_base.point.z,point_base.header.frame_id.c_str());

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常.....");
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,控制台将输出,坐标转换后的结果。

方案B:Python实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.发布方

python 复制代码
#! /usr/bin/env python
"""  
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 静态坐标广播器
        4.创建并组织被广播的消息
        5.广播器发送消息
        6.spin
"""
# 1.导包
import rospy
import tf2_ros
import tf
from geometry_msgs.msg import TransformStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_tf_pub_p")
    # 3.创建 静态坐标广播器
    broadcaster = tf2_ros.StaticTransformBroadcaster()
    # 4.创建并组织被广播的消息
    tfs = TransformStamped()
    # --- 头信息
    tfs.header.frame_id = "world"
    tfs.header.stamp = rospy.Time.now()
    tfs.header.seq = 101
    # --- 子坐标系
    tfs.child_frame_id = "radar"
    # --- 坐标系相对信息
    # ------ 偏移量
    tfs.transform.translation.x = 0.2
    tfs.transform.translation.y = 0.0
    tfs.transform.translation.z = 0.5
    # ------ 四元数
    qtn = tf.transformations.quaternion_from_euler(0,0,0)
    tfs.transform.rotation.x = qtn[0]
    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]


    # 5.广播器发送消息
    broadcaster.sendTransform(tfs)
    # 6.spin
    rospy.spin()

权限设置以及配置文件此处略。

3.订阅方

python 复制代码
#! /usr/bin/env python
"""  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,
    转换成父级坐标系中的坐标点

    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.创建一个 radar 坐标系中的坐标点
        5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
        6.spin

"""
# 1.导包
import rospy
import tf2_ros
# 不要使用 geometry_msgs,需要使用 tf2 内置的消息类型
from tf2_geometry_msgs import PointStamped
# from geometry_msgs.msg import PointStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_sub_tf_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():    
    # 4.创建一个 radar 坐标系中的坐标点
        point_source = PointStamped()
        point_source.header.frame_id = "radar"
        point_source.header.stamp = rospy.Time.now()
        point_source.point.x = 10
        point_source.point.y = 2
        point_source.point.z = 3

        try:
    #     5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
            point_target = buffer.transform(point_source,"world")
            rospy.loginfo("转换结果:x = %.2f, y = %.2f, z = %.2f",
                            point_target.point.x,
                            point_target.point.y,
                            point_target.point.z)
        except Exception as e:
            rospy.logerr("异常:%s",e)

    #     6.spin
        rate.sleep()

权限设置以及配置文件此处略。

PS: 在 tf2 的 python 实现中,tf2 已经封装了一些消息类型,不可以使用 geometry_msgs.msg 中的类型

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,控制台将输出,坐标转换后的结果。

补充1:

当坐标系之间的相对位置固定时,那么所需参数也是固定的: 父系坐标名称、子级坐标系名称、x偏移量、y偏移量、z偏移量、x 翻滚角度、y俯仰角度、z偏航角度,实现逻辑相同,参数不同,那么 ROS 系统就已经封装好了专门的节点,使用方式如下:

rosrun tf2_ros static_transform_publisher x偏移量 y偏移量 z偏移量 z偏航角度 y俯仰角度 x翻滚角度 父级坐标系 子级坐标系

示例:rosrun tf2_ros static_transform_publisher 0.2 0 0.5 0 0 0 /baselink /laser

也建议使用该种方式直接实现静态坐标系相对信息发布。

补充2:

可以借助于rviz显示坐标系关系,具体操作:

  • 新建窗口输入命令:rviz;
  • 在启动的 rviz 中设置Fixed Frame 为 base_link;
  • 点击左下的 add 按钮,在弹出的窗口中选择 TF 组件,即可显示坐标关系。

另请参考:

相关推荐
泰迪智能科技011 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手1 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20212 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight2 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说2 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu2 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦2 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot
audyxiao0012 小时前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
Jeremy_lf3 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型