Particle Life粒子生命演化的MATLAB模拟

Particle Life粒子生命演化的MATLAB模拟

  • [0 前言](#0 前言)
  • [1 基本原理](#1 基本原理)
    • [1.1 力影响-吸引排斥行为](#1.1 力影响-吸引排斥行为)
    • [1.2 距离rmax影响](#1.2 距离rmax影响)
  • [2 多种粒子相互作用](#2 多种粒子相互作用)
    • [2.1 双种粒子作用](#2.1 双种粒子作用)
    • [2.1 多种粒子作用](#2.1 多种粒子作用)
  • [3 代码](#3 代码)

惯例声明:本人没有相关的工程应用经验,只是纯粹对相关算法感兴趣才写此博客。所以如果有错误,欢迎在评论区指正,不胜感激。本文主要关注于算法的实现,对于实际应用等问题本人没有任何经验,所以也不再涉及。

0 前言

Particle Life粒子生命演化最早是2017年由数字艺术家Jeffery Ventrella定义的,通过非常简单方法的定义粒子间的作用力,从而产生非常复杂的变化。

最开始Jeffery Ventrella管这种生成方法叫做Clusters,其思想来源于生物学家Lynn Margulus。每个粒子具有不同的颜色,每个颜色代表一种属性。粒子不仅会受到自己颜色粒子的吸引或排斥,也会受到其它颜色粒子的吸引和排斥。

在不同的参数下,粒子间会发生复杂的相互运动,某些参数会呈现出复杂的固定斑图,某些参数会呈现出类似生物之间的集群、逃跑、捕食等各种行为。

章节安排为:第一章主要是讲解原理,第二章演示一些基本的例子,第三章给出了基于MATLAB的具体代码。

本文的参考文献如下:

1\]粒子生命演化:由数量庞大的单体粒子演化出复杂的群体行为逻辑 \[2\] \[3\]blender3.6模拟-粒子生命-Particle Life # 1 基本原理 首先,假设一群粒子A,它们互相会受到其它粒子的作用力。两个粒子间的力大小是粒子间距离r的函数。 ![请添加图片描述](https://file.jishuzhan.net/article/1699255147558866945/2202b6effdb9400fb0c29c42857a6ff3.jpeg) 当距离r较小,小于rmin时,设置了-1的排斥力,为防止粒子之间重合。当粒子距离在rmin和rmax之间,粒子最大作用力为Fi。当粒子距离超过rmax,设置作用力为0,防止计算量过大。 当然有几个细节点需要注意: 1粒子所受的作用力只遵循上面的力方程,但不一定遵循牛顿第三定理。粒子的速度和加速度通过牛二律F=ma得到。由于防止粒子运动过快,还需要在全场设置粘滞阻尼。所以其实牛顿第一定理也不满足。当然由于这并不是精准的模拟仿真,所以这些小事可以忽略。 2力Fi是可以自行设置的,当Fi\<0,粒子间呈现出排斥性,当Fi\>0,粒子间呈现出吸引性,一般不超过±2; 3距离rmin通常在rmax的1/4\~1/5左右;rmax和画布大小有关,rmax越大,越会有全局的粒子参与,rmax越小,粒子的行为越局部。 ## 1.1 力影响-吸引排斥行为 当F\<0时,粒子间呈现出排斥的现象: ![请添加图片描述](https://file.jishuzhan.net/article/1699255147558866945/25615c78c12e4286bfea521bcfb865ec.gif) 当F\>0时,粒子间呈现出吸引的现象: ![请添加图片描述](https://file.jishuzhan.net/article/1699255147558866945/094d5651b3b64cb38a03c10f14e52aaf.gif) ## 1.2 距离rmax影响 这里画布大小都定义为1。 当rmax=0.2时,粒子的汇集效果如下: ![请添加图片描述](https://file.jishuzhan.net/article/1699255147558866945/c18f3864f2eb4703af5d79022a70ca7b.gif) 当rmax=0.5时,粒子的汇集效果更全局化: ![请添加图片描述](https://file.jishuzhan.net/article/1699255147558866945/ba7b2bdef21947418e59fcbccc722437.gif) # 2 多种粒子相互作用 ## 2.1 双种粒子作用 对于两种粒子A和B,力Fi共有4个,分别为A对A之间的力,A对B之间的力,B对A之间的力和B对B之间的力。这4个力可以写为一个矩阵形式: | | A | B | |---|------|------| | A | F_AA | F_AB | | B | F_BA | F_BB | 当假设A对A存在吸引,且A还会吸引B。但是B没有反向作用A的力,B与B之间也不会互相作用。这里的矩阵可以写作: \[ 1 0 0.5 0 \] \\begin{bmatrix} 1 \&0 \\\\ 0.5\&0 \\end{bmatrix} \[10.500

此时得到的图形为细胞图案,A粒子在中间互相吸引到一团,周围吸引一圈B粒子。

再添加两个规则给粒子B,粒子B之间会弱吸引,但粒子B排斥粒子A。此时由于粒子AB间一个吸引一个排斥,构成了不断向前运动的追逐系统。

1 − 1 0.5 0.5 \] \\begin{bmatrix} 1 \&-1 \\\\ 0.5\&0.5 \\end{bmatrix} \[10.5−10.5

追逐模型如下:

之后多种粒子之间的运动规律,也是由上述各个规则叠加演化而成。

但是由于规则数量等于粒子种类N的平方,比如3种粒子就有9种粒子间规则,4种粒子就有16种粒子间规则。这就导致复杂性暴增,产生了无穷多的变化。

2.1 多种粒子作用

由于规则的复杂性,每一次随机出的结果可能都是独一无二的,且是其它人都未曾见过的。这种随机性和复杂性正是Particle Life的迷人之处。

下面列举一些演示计算结果

三种粒子,细胞图案:

三种粒子,岛屿图案:

三种粒子,循环捕食图案:

5种粒子的交互作用,呈现出一定的结构:

3 代码

上面绘图代码见文末。

主要更改粒子数量N,颜色数量NColor即可。建议粒子数量N大概是500倍颜色数量。不易太多,由于MATLAB运行效率较低,所以按照实际电脑配置自行更改。

力的作用距离Rmax在最好是1/c的形式,c是一个整数。

迭代总步数StepMax越大,展示的时间越长。这个如果想长时间欣赏粒子间作用,可以选择一个比较大的数。

图像刷新频率FrameFreq是用来控制多少个时间步显示一次。一般选择2就行,太大会有卡顿的感觉。

matlab 复制代码
clear
clc
close all
%Particle Life粒子生命 MATLAB代码

%% 初始设定参数
%初始设定
rng('shuffle');%随机种子
N=1500;%粒子数量
NColor=3;%颜色数量
Ni=rand(NColor,1);Ni=round(Ni*N/sum(Ni));%随机分配每个颜色对应的粒子数量
N=sum(Ni);

Rmax=1/5;%力作用的距离
mcp=hsv(40);colormap(mcp(1:32,:));%定义展示颜色
StepMax=1.2e3;%结束迭代时间步
FrameFreq=2;%刷新率,正整数,最小为1,越大图像刷新越慢
%% 其它默认参数
%绘图范围
Xlim=[0,1];
Ylim=[0,1];
%定义每个粒子颜色编号
ColorP=zeros(N,1);
for t=1:NColor
    ColorP(1+sum(Ni(1:t-1)):sum(Ni(1:t)))=t;
end
%粒子的力关系矩阵
FMat=rand(NColor,NColor)*3-1.5;%所有力Fi在-1.5~1.5之间
%粒子坐标速度
XY_P=rand(N,2)*0.8+0.1;%所有粒子点坐标
VXY_P=zeros(N,2);%粒子点速度


Rmin=Rmax/5;%粒子间的最小作用距离
MeshMax=1/Rmax;%网格数量
dt=5e-3;%时间精度

%构建力函数
t=0;%初始时间
c=Rmax*15.0*sqrt(N);%阻尼,为了防止粒子运动速度太快

%% 循环计算每一步迭代
tJ=0;%绘图计数
for kt=1:StepMax
    %计算点对应的网格
    XYindx=ceil(XY_P/Rmax);
    %循环计算每个点所受的力
    ForceP=zeros(N,2);
    for kp=1:N %循环每一个点
        %该点的颜色、坐标和网格
        Color_k=ColorP(kp,:);
        XY_k=XY_P(kp,:);
        XYindx_k=XYindx(kp,:);
        %计算周围点对该点的力
        F_k=FMat(Color_k,ColorP)';
        
        [Indx_t,XY_P_B,F_B]=Beside9(XYindx_k,XYindx,MeshMax,XY_P,F_k);%周边点索引

        ForceP_k=F_Func(XY_P_B-XY_k,F_B,Rmin,Rmax);
        ForceP(kp,:)=ForceP_k;
    end
    %增加阻尼项,和v相反
    ForceP=ForceP-c.*VXY_P;

    %根据F更新位移x和速度v。dv=at,dx=vt+at^2/2
    VXY_P_New=VXY_P+ForceP*dt;
    XY_P=XY_P+0.5*(VXY_P+VXY_P_New)*dt;
    VXY_P=VXY_P_New;

    %循环边界条件,如果超出边界,就移到另一端
    XY_P(XY_P>1)=XY_P(XY_P>1)-1;
    XY_P(XY_P<0)=XY_P(XY_P<0)+1;

    t=t+dt;%加一时间步
    if ~mod(kt,FrameFreq)
        f=figure(1);
        f.Color=[1,1,1];
        cla;
        scatter(XY_P(:,1),XY_P(:,2),6,ColorP,"filled");
        xlim([0,1]);ylim([0,1]);
        %set(gca,'XTick',[],'YTick',[])
        axis off
        pause(0.01)%每一帧图像停留时间
        tJ=tJ+1;
    end
end

%% 后置函数
function Ft2=F_Func(xy,F,rmin,rmax)
%粒子左右函数
%xy,N行2列的向量,代表别的点距离O点的距离向量
%F,N行1列的向量,代表吸引力F大小
rmid=0.5*(rmax+rmin);
dmid=0.5*(rmax-rmin);
r=sqrt(xy(:,1).^2+xy(:,2).^2);%距离
%r(r==0)=rmax;
Ft=zeros(size(r));
%第一段
indx1=(r<rmin);
Ft(indx1)=r(indx1)/rmin-1;
%第二段
indx_last=~indx1;
indx2=indx_last&(r<rmid);
Ft(indx2)=F(indx2).*(r(indx2)-rmin)/dmid;
%第三段
indx3=(r>=rmid)&(r<rmax);
Ft(indx3)=-F(indx3).*(r(indx3)-rmax)/dmid;
%计算力向量
dir_xy=xy./r;
dir_xy(isnan(dir_xy))=0;
Ft_Vec=dir_xy.*(Ft*ones(1,2));
%计算合力
Ft2=sum(Ft_Vec,1);
end

function [BesideIndx1,XY_P_B,F_P]=Beside9(XYindx0,XYindx1,NMesh,XY_P,F_P)
%寻找点0附近区域3×3共9格区域内
%开启循环边界条件

%复制出边界点,然后再计算。因为有的点在rmax较大的循环边界条件,会同时向上和下吸引
if XYindx0(1)==1
    %把最后一列复制一份到前面
    indx_t=XYindx1(:,1)==NMesh;
    XYindx1_t=XYindx1(indx_t,:);
    XYindx1_t(:,1)=0;%赋值为0
    XYindx1=[XYindx1;XYindx1_t];
    XY_P=[XY_P;XY_P(indx_t,:)+[-1,0]];
    F_P=[F_P;F_P(indx_t)];
end
if XYindx0(1)==NMesh
    %把第一列复制一份到最后
    indx_t=XYindx1(:,1)==1;
    XYindx1_t=XYindx1(indx_t,:);
    XYindx1_t(:,1)=NMesh+1;%赋值为NMesh+1
    XYindx1=[XYindx1;XYindx1_t];
    XY_P=[XY_P;XY_P(indx_t,:)+[1,0]];
    F_P=[F_P;F_P(indx_t)];
end
if XYindx0(2)==1
    %把最后一行复制一份到前面
    indx_t=XYindx1(:,2)==NMesh;
    XYindx1_t=XYindx1(indx_t,:);
    XYindx1_t(:,2)=0;%赋值为0
    XYindx1=[XYindx1;XYindx1_t];
    XY_P=[XY_P;XY_P(indx_t,:)+[0,-1]];
    F_P=[F_P;F_P(indx_t)];
end
if XYindx0(2)==NMesh
    %把第一行复制一份到最后
    indx_t=XYindx1(:,2)==1;
    XYindx1_t=XYindx1(indx_t,:);
    XYindx1_t(:,2)=NMesh+1;%赋值为NMesh+1
    XYindx1=[XYindx1;XYindx1_t];
    XY_P=[XY_P;XY_P(indx_t,:)+[0,1]];
    F_P=[F_P;F_P(indx_t)];
end
%夹在范围之内的点有哪些
BesideIndx_X=(XYindx0(1)-1<=XYindx1(:,1))&(XYindx1(:,1)<=XYindx0(1)+1);
BesideIndx_Y=(XYindx0(2)-1<=XYindx1(:,2))&(XYindx1(:,2)<=XYindx0(2)+1);
BesideIndx1=BesideIndx_X & BesideIndx_Y;
XY_P_B=XY_P(BesideIndx1,:);
F_P=F_P(BesideIndx1);
end
相关推荐
aini_lovee2 小时前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
3GPP仿真实验室3 小时前
【Matlab源码】6G候选波形:OFDM-IM 增强仿真平台 DM、CI
开发语言·matlab·ci/cd
rit84324997 小时前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
我找到地球的支点啦7 小时前
通信扩展——扩频技术(超级详细,附带Matlab代码)
开发语言·matlab
Dev7z19 小时前
基于 MATLAB 的铣削切削力建模与仿真
开发语言·matlab
fengfuyao9851 天前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
机器学习之心1 天前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
rit84324991 天前
基于MATLAB的环境障碍模型构建与蚁群算法路径规划实现
开发语言·算法·matlab
hoiii1871 天前
MATLAB SGM(半全局匹配)算法实现
前端·算法·matlab
yong99901 天前
MATLAB面波频散曲线反演程序
开发语言·算法·matlab