算法通关村-----快速排序的原理和实现

快速排序介绍

快速排序是一种经典高效的排序方法,是分治策略在排序上的具体体现。将一个大的待排序列分割成若干个小的有序序列,最终将各个小的有序序列合并成一个大的有序序列。

快速排序的实现原理

选择一个基准值,将小于基准值的元素放在基准值左侧,大于基准值的元素放在基准值右侧,基准值放在中间。基准值可以选择待排序列的第一个元素,最后一个元素,中间元素,也可以选择三者的中位数提高快排效率。一轮快速排序后,基准值已经有序,之后对基准值两侧的数据分别进行快排,这是一个递归的过程,最终整个序列有序。整个过程类似于树的前序遍历,每一轮的过程使用双指针,所以快排本质上是树的前序遍历+双指针。

快速排序的具体实现

基准值选择不同,代码实现不同,但本质上都是树的前序遍历+双指针

选择第一个元素作为基准值代码实现

代码实现

java 复制代码
public void quickSort(int[] array, int left, int right) {
    if (left < right) {
        int pivot = array[left];
        int i = right + 1;
        for (int j = right; j > left; j--) {
            if (array[j] > pivot) {
                i--;
                int temp = array[i];
                array[i] = array[j];
                array[j] = temp;
            }
        }
        int pivotIndex = i - 1;
        int temp = array[pivotIndex];
        array[pivotIndex] = array[left];
        array[left] = temp;
        quickSort(array, left, pivotIndex - 1);
        quickSort(array, pivotIndex + 1, right);
    }
}

选择最后一个元素作为基准值代码实现

代码实现

java 复制代码
public void quickSort(int[] array, int left, int right) {
    if (left < right) {
        int pivot = array[right];
        int i = left - 1;
        for (int j = left; j < right; j++) {
            if (array[j] < pivot) {
                i++;
                int temp = array[i];
                array[i] = array[j];
                array[j] = temp;
            }
        }
        int pivotIndex = i + 1;
        int temp = array[pivotIndex];
        array[pivotIndex] = array[right];
        array[right] = temp;
        quickSort(array, left, pivotIndex - 1);
        quickSort(array, pivotIndex + 1, right);
    }
}

选择中值作为基准值代码实现

代码实现

java 复制代码
public static void quickSort(int[] array, int start, int end) {
    if (start >= end) {
        return;
    }
    int left = start;
    int right = end;
    int mid = (left + right) / 2;
    int pivot = array[mid];
    while (left <= right) {
        while (left <= right && array[left] < pivot) {
            left++;
        }
        while (left <= right && array[right] > pivot) {
            right--;
        }
        if (left <= right) {
            int temp = array[left];
            array[left] = array[right];
            array[right] = temp;
            left++;
            right--;
        }
    }
    quickSort(array, start, right);
    quickSort(array, left, end);
}

快速排序复杂度分析

时间复杂度:

平均情况下:O(n log n)。在平均情况下,快速排序通常具有优秀的性能。每次分割都将数组分为两部分,每部分的大小约为原数组的一半。因此,在进行 log n 次递归后,每个子数组都会被完全排序,总的时间复杂度是 O(n log n)。

最坏情况下:O(n^2)。最坏情况发生在选择基准值不平衡的情况下,导致每次分割只能减少一个元素。例如,如果数组已经有序或接近有序,且始终选择第一个元素作为基准值,那么就会出现最坏情况。为了避免最坏情况,可以使用随机选择基准值或者三数取中法等策略。

最好情况下:O(n )。最好情况发生在数组有序

空间复杂度

快速排序是一种原地排序算法,不需要额外的内存空间,因此其空间复杂度是 O(1)。

稳定性

快速排序是不稳定的排序算法,即相等元素的相对顺序可能在排序后改变。

相关推荐
程序员 小柴5 分钟前
docker的与使用
java·docker·eureka
ゞ 正在缓冲99%…10 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong11 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
Seven9724 分钟前
【Guava】并发编程ListenableFuture&Service
java
WannaRunning25 分钟前
浅谈Tomcat数据源连接池
java·oracle·tomcat
惊鸿.Jh30 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L31 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
forestsea32 分钟前
使用 Spring Boot 和 GraalVM 的原生镜像
java·spring boot·spring native·原生映像
逸狼35 分钟前
【JavaEE进阶】Spring AOP入门
java·java-ee
碳基学AI37 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习