torch.nn中的L1Loss和MSELoss

我们打开Pytorch官网,找到torch.nn中的loss function,进去如下图所示。

L1LOSS

我们先来看看 L1LOSS 损失函数的使用。下图是官网给出的描述。

L1loss有两种方式,一种是将所有误差累加作为总损失,另一种是将所有误差累加之后求平均作为总损失。

例如,给定输入为input = [1,2,3],期望目标为target = [1,2,5],若L1loss采用累加求和求总损失,那么会有总损失L=|1-1|+|2-2|+|5 -3|=2。如示例2所示。

若L1loss采用累计求和后求平均作为总损失,那么则有总损失L=(|1-1|+|2-2|+|5 -3|)/3=0.6667。如示例1所示。

我们用代码来实现L1loss功能。

示例1:L1loss的方式为累加求和后求平均。

python 复制代码
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss()
result = loss(inputs, targets)
print(result) # tensor(0.6667)

示例2:L1loss的方式为累加求和。 此时L1loss中的参数reduction应为 'sum'。默认为'mean'。

python 复制代码
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = L1Loss(reduction='sum')
result = loss(inputs, targets)
print(result) # tensor(2.)

MSELOSS

我们再来看看 MSELOSS 损失函数的使用。下图是官网给出的描述。

MSELOSS 与 L1LOSS唯一的区别是MSELOSS在计算每一项损失时都考虑平方。我们以上面的例子为例。

给定输入为input = [1,2,3],期望目标为target = [1,2,5],若MSEloss采用累加求和求总损失,那么会有总损失L=(1-1)^2+(2-2)^2+(5 -3)^2=4。如示例3所示。

若 MSEloss 采用累计求和后求平均作为总损失,那么则有总损失L = {(1-1)^2+(2-2)^2+(5 -3)^2 } /3=4/3。如示例4所示。

示例3

python 复制代码
import torch
from torch.nn import MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = MSELoss(reduction='sum')
result = loss(inputs, targets)
print(result) # tensor(4.)

示例4

python 复制代码
import torch
from torch.nn import MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = MSELoss()
result = loss(inputs, targets)
print(result) # tensor(1.3333)
相关推荐
Ro Jace1 天前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
007php0071 天前
某游戏大厂 Java 面试题深度解析(四)
java·开发语言·python·面试·职场和发展·golang·php
景彡先生1 天前
Python pandas数据透视表(pivot_table)详解:从入门到实战,多维数据分析利器
python·数据分析·pandas
Blossom.1181 天前
把AI“编”进草垫:1KB决策树让宠物垫自己报「如厕记录」
java·人工智能·python·算法·决策树·机器学习·宠物
rengang661 天前
03-深度学习与机器学习的对比:分析深度学习与传统机器学习的异同
人工智能·深度学习·机器学习
极客数模1 天前
2025年(第六届)“大湾区杯”粤港澳金融数学建模竞赛准备!严格遵循要求,拿下大奖!
大数据·python·数学建模·金融·分类·图论·boosting
倔强青铜三1 天前
苦练Python第73天:玩转对象持久化,pickle模块极速入门
人工智能·python·面试
咕咚-萌西1 天前
DeepSeek-OCR
人工智能·深度学习·ocr
程序员三藏1 天前
Postman持久化保存/设置断言详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
rengang661 天前
04-深度学习的基本概念:涵盖深度学习中的关键术语和原理
人工智能·深度学习