torch.nn中的L1Loss和MSELoss

我们打开Pytorch官网,找到torch.nn中的loss function,进去如下图所示。

L1LOSS

我们先来看看 L1LOSS 损失函数的使用。下图是官网给出的描述。

L1loss有两种方式,一种是将所有误差累加作为总损失,另一种是将所有误差累加之后求平均作为总损失。

例如,给定输入为input = [1,2,3],期望目标为target = [1,2,5],若L1loss采用累加求和求总损失,那么会有总损失L=|1-1|+|2-2|+|5 -3|=2。如示例2所示。

若L1loss采用累计求和后求平均作为总损失,那么则有总损失L=(|1-1|+|2-2|+|5 -3|)/3=0.6667。如示例1所示。

我们用代码来实现L1loss功能。

示例1:L1loss的方式为累加求和后求平均。

python 复制代码
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss()
result = loss(inputs, targets)
print(result) # tensor(0.6667)

示例2:L1loss的方式为累加求和。 此时L1loss中的参数reduction应为 'sum'。默认为'mean'。

python 复制代码
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = L1Loss(reduction='sum')
result = loss(inputs, targets)
print(result) # tensor(2.)

MSELOSS

我们再来看看 MSELOSS 损失函数的使用。下图是官网给出的描述。

MSELOSS 与 L1LOSS唯一的区别是MSELOSS在计算每一项损失时都考虑平方。我们以上面的例子为例。

给定输入为input = [1,2,3],期望目标为target = [1,2,5],若MSEloss采用累加求和求总损失,那么会有总损失L=(1-1)^2+(2-2)^2+(5 -3)^2=4。如示例3所示。

若 MSEloss 采用累计求和后求平均作为总损失,那么则有总损失L = {(1-1)^2+(2-2)^2+(5 -3)^2 } /3=4/3。如示例4所示。

示例3

python 复制代码
import torch
from torch.nn import MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = MSELoss(reduction='sum')
result = loss(inputs, targets)
print(result) # tensor(4.)

示例4

python 复制代码
import torch
from torch.nn import MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))


loss = MSELoss()
result = loss(inputs, targets)
print(result) # tensor(1.3333)
相关推荐
Hcoco_me几秒前
大模型面试题39:KV Cache 完全指南
人工智能·深度学习·自然语言处理·transformer·word2vec
小途软件1 分钟前
基于计算机视觉的课堂行为编码研究
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·django
盼小辉丶1 分钟前
PyTorch实战——pix2pix详解与实现
pytorch·深度学习·生成模型
智航GIS2 分钟前
9.2 多进程入门
数据库·python
小途软件2 分钟前
基于计算机视觉的桥梁索力测试方法
人工智能·python·语言模型·自然语言处理·django
yousuotu9 分钟前
基于Python实现水果新鲜度分类
开发语言·python·分类
Data_agent11 分钟前
微店商品列表API接口指南
大数据·数据库·python
吴老弟i12 分钟前
基于 VSCode 实现 Python 开发与调试 | 环境配置搭建 | PIP Anaconda
vscode·python·pip
七夜zippoe15 分钟前
异步编程实战:构建高性能Python网络应用
开发语言·python·websocket·asyncio·aiohttp
tianyuanwo15 分钟前
Python虚拟环境深度解析:从virtualenv到virtualenvwrapper
开发语言·python·virtualenv