kakfa 3.5 kafka服务端处理消费者客户端拉取数据请求源码

一、服务端接收消费者拉取数据的方法

kafka服务端接收生产者数据的API在KafkaApis.scala类中,handleFetchRequest方法

scala 复制代码
override def handle(request: RequestChannel.Request, requestLocal: RequestLocal): Unit = {
	//省略代码
	request.header.apiKey match {
          //消费者拉取消息请求,这个接口进行处理
        case ApiKeys.FETCH => handleFetchRequest(request)
        //省略代码
    }    	
        
 }  
def handleFetchRequest(request: RequestChannel.Request): Unit = {
    //从请求中获取请求的API版本(versionId)和客户端ID(clientId)。
    val versionId = request.header.apiVersion
    val clientId = request.header.clientId
    //从请求中获取Fetch请求的数据
    val fetchRequest = request.body[FetchRequest]
    //根据请求的版本号,决定是否获取主题名称的映射关系(topicNames)。如果版本号大于等于13,则使用metadataCache.topicIdsToNames()获取主题名称映射关系,否则使用空的映射关系。
    val topicNames =
      if (fetchRequest.version() >= 13)
        metadataCache.topicIdsToNames()
      else
        Collections.emptyMap[Uuid, String]()
    //根据主题名称映射关系,获取Fetch请求的数据(fetchData)和需要忽略的主题(forgottenTopics)。
    val fetchData = fetchRequest.fetchData(topicNames)
    val forgottenTopics = fetchRequest.forgottenTopics(topicNames)
    //创建一个Fetch上下文(fetchContext),用于管理Fetch请求的处理过程。该上下文包含了Fetch请求的版本号、元数据、是否来自Follower副本、Fetch数据、需要忽略的主题和主题名称映射关系。
    val fetchContext = fetchManager.newContext(
      fetchRequest.version,
      fetchRequest.metadata,
      fetchRequest.isFromFollower,
      fetchData,
      forgottenTopics,
      topicNames)
    //初始化两个可变数组erroneous和interesting,用于存储处理过程中的错误和请求需要哪些topic的数据。
    val erroneous = mutable.ArrayBuffer[(TopicIdPartition, FetchResponseData.PartitionData)]()
    val interesting = mutable.ArrayBuffer[(TopicIdPartition, FetchRequest.PartitionData)]()
  //Fetch请求来自Follower副本
    if (fetchRequest.isFromFollower) {
      //则需要验证权限。如果权限验证通过
      // The follower must have ClusterAction on ClusterResource in order to fetch partition data.
      if (authHelper.authorize(request.context, CLUSTER_ACTION, CLUSTER, CLUSTER_NAME)) {
        //遍历每个分区的数据,根据不同情况将数据添加到erroneous或interesting中
        fetchContext.foreachPartition { (topicIdPartition, data) =>
          if (topicIdPartition.topic == null)
            erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.UNKNOWN_TOPIC_ID)
          else if (!metadataCache.contains(topicIdPartition.topicPartition))
            erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.UNKNOWN_TOPIC_OR_PARTITION)
          else
            interesting += topicIdPartition -> data
        }
      } else {
        //如果权限验证失败,则将所有分区的数据添加到erroneous中。
        fetchContext.foreachPartition { (topicIdPartition, _) =>
          erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.TOPIC_AUTHORIZATION_FAILED)
        }
      }
    } else {
      //如果Fetch请求来自普通的Kafka消费者
      // Regular Kafka consumers need READ permission on each partition they are fetching.
      val partitionDatas = new mutable.ArrayBuffer[(TopicIdPartition, FetchRequest.PartitionData)]
      fetchContext.foreachPartition { (topicIdPartition, partitionData) =>
        if (topicIdPartition.topic == null)
          erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.UNKNOWN_TOPIC_ID)
        else
          partitionDatas += topicIdPartition -> partitionData
      }
      //需要验证对每个分区的读取权限,根据权限验证结果,将数据添加到erroneous或interesting中。
      val authorizedTopics = authHelper.filterByAuthorized(request.context, READ, TOPIC, partitionDatas)(_._1.topicPartition.topic)
      partitionDatas.foreach { case (topicIdPartition, data) =>
        if (!authorizedTopics.contains(topicIdPartition.topic))
          erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.TOPIC_AUTHORIZATION_FAILED)
        else if (!metadataCache.contains(topicIdPartition.topicPartition))
          erroneous += topicIdPartition -> FetchResponse.partitionResponse(topicIdPartition, Errors.UNKNOWN_TOPIC_OR_PARTITION)
        else
          interesting += topicIdPartition -> data
      }
    }
  //省略代码
   //如果需要的topic没有校验通过或者不存在,则直接调用processResponseCallback处理响应
    if (interesting.isEmpty) {
      processResponseCallback(Seq.empty)
    } else {
      // for fetch from consumer, cap fetchMaxBytes to the maximum bytes that could be fetched without being throttled given
      // no bytes were recorded in the recent quota window
      // trying to fetch more bytes would result in a guaranteed throttling potentially blocking consumer progress
      //如果是Follower提取数据的请求,则maxQuotaWindowBytes设置为int类型的最大,否则从记录中得到此client以前获取数据大小,
      // 再和请求中、配置文件中的fetchMaxBytes比较得到下面fetchMaxBytes和fetchMinBytes两个值
      val maxQuotaWindowBytes = if (fetchRequest.isFromFollower)
        Int.MaxValue
      else
        quotas.fetch.getMaxValueInQuotaWindow(request.session, clientId).toInt
      //根据请求的类型和配额限制,获取Fetch请求的最大字节数(fetchMaxBytes)和最小字节数(fetchMinBytes)
      val fetchMaxBytes = Math.min(Math.min(fetchRequest.maxBytes, config.fetchMaxBytes), maxQuotaWindowBytes)
      val fetchMinBytes = Math.min(fetchRequest.minBytes, fetchMaxBytes)

      val clientMetadata: Optional[ClientMetadata] = if (versionId >= 11) {
        // Fetch API version 11 added preferred replica logic
        //提取 API 版本 11以上 添加了首选副本逻辑
        Optional.of(new DefaultClientMetadata(
          fetchRequest.rackId,
          clientId,
          request.context.clientAddress,
          request.context.principal,
          request.context.listenerName.value))
      } else {
        Optional.empty()
      }
      //创建一个FetchParams对象,包含了请求的各种参数
      val params = new FetchParams(
        versionId,
        fetchRequest.replicaId,
        fetchRequest.replicaEpoch,
        fetchRequest.maxWait,
        fetchMinBytes,
        fetchMaxBytes,
        FetchIsolation.of(fetchRequest),
        clientMetadata
      )

      // call the replica manager to fetch messages from the local replica
      //replicaManager.fetchMessages方法,从本地副本获取消息,并提供回调函数processResponseCallback处理响应
      replicaManager.fetchMessages(
        params = params,
        fetchInfos = interesting,
        quota = replicationQuota(fetchRequest),
        responseCallback = processResponseCallback,
      )
    }
}    

replicaManager.fetchMessages 最后通过这个方法获得日志

scala 复制代码
/**
   * Fetch messages from a replica, and wait until enough data can be fetched and return;
   * the callback function will be triggered either when timeout or required fetch info is satisfied.
   * Consumers may fetch from any replica, but followers can only fetch from the leader.
   * 从副本中获取消息,并等待可以获取足够的数据并返回;
   * 当满足超时或所需的获取信息时,将触发回调函数。
   * 消费者可以从任何副本中获取,但追随者只能从领导者那里获取。
   */
  def fetchMessages(
    params: FetchParams,
    fetchInfos: Seq[(TopicIdPartition, PartitionData)],
    quota: ReplicaQuota,
    responseCallback: Seq[(TopicIdPartition, FetchPartitionData)] => Unit
  ): Unit = {
    // check if this fetch request can be satisfied right away
    //调用readFromLocalLog函数从本地日志中读取消息,并将结果保存在logReadResults中。
    val logReadResults = readFromLocalLog(params, fetchInfos, quota, readFromPurgatory = false)
    var bytesReadable: Long = 0
    var errorReadingData = false
    var hasDivergingEpoch = false
    var hasPreferredReadReplica = false
    val logReadResultMap = new mutable.HashMap[TopicIdPartition, LogReadResult]
    //根据读取结果更新一些变量,如bytesReadable(可读取的字节数)、errorReadingData(是否读取数据时发生错误)、hasDivergingEpoch(是否存在不同的epoch)和hasPreferredReadReplica(是否存在首选读取副本)。
    logReadResults.foreach { case (topicIdPartition, logReadResult) =>
      brokerTopicStats.topicStats(topicIdPartition.topicPartition.topic).totalFetchRequestRate.mark()
      brokerTopicStats.allTopicsStats.totalFetchRequestRate.mark()
      if (logReadResult.error != Errors.NONE)
        errorReadingData = true
      if (logReadResult.divergingEpoch.nonEmpty)
        hasDivergingEpoch = true
      if (logReadResult.preferredReadReplica.nonEmpty)
        hasPreferredReadReplica = true
      bytesReadable = bytesReadable + logReadResult.info.records.sizeInBytes
      logReadResultMap.put(topicIdPartition, logReadResult)
    }

    // respond immediately if 1) fetch request does not want to wait  不需要等待
    //                        2) fetch request does not require any data 不需要任何数据
    //                        3) has enough data to respond 有足够的数据
    //                        4) some error happens while reading data 读取数据时发生错误
    //                        5) we found a diverging epoch 存在不同的epoch
    //                        6) has a preferred read replica  存在首选读取副本
    if (params.maxWaitMs <= 0 || fetchInfos.isEmpty || bytesReadable >= params.minBytes || errorReadingData ||
      hasDivergingEpoch || hasPreferredReadReplica) {
      val fetchPartitionData = logReadResults.map { case (tp, result) =>
        val isReassignmentFetch = params.isFromFollower && isAddingReplica(tp.topicPartition, params.replicaId)
        tp -> result.toFetchPartitionData(isReassignmentFetch)
      }
      responseCallback(fetchPartitionData)
    } else {
      //将构建一个延迟处理的DelayedFetch对象,并将其放入延迟处理队列(delayedFetchPurgatory)中,以便在满足特定条件时完成请求。
      // construct the fetch results from the read results
      val fetchPartitionStatus = new mutable.ArrayBuffer[(TopicIdPartition, FetchPartitionStatus)]
      fetchInfos.foreach { case (topicIdPartition, partitionData) =>
        logReadResultMap.get(topicIdPartition).foreach(logReadResult => {
          val logOffsetMetadata = logReadResult.info.fetchOffsetMetadata
          fetchPartitionStatus += (topicIdPartition -> FetchPartitionStatus(logOffsetMetadata, partitionData))
        })
      }
      val delayedFetch = new DelayedFetch(
        params = params,
        fetchPartitionStatus = fetchPartitionStatus,
        replicaManager = this,
        quota = quota,
        responseCallback = responseCallback
      )

      // create a list of (topic, partition) pairs to use as keys for this delayed fetch operation
      val delayedFetchKeys = fetchPartitionStatus.map { case (tp, _) => TopicPartitionOperationKey(tp) }

      // try to complete the request immediately, otherwise put it into the purgatory;
      // this is because while the delayed fetch operation is being created, new requests
      // may arrive and hence make this operation completable.
      delayedFetchPurgatory.tryCompleteElseWatch(delayedFetch, delayedFetchKeys)
    }
  }

通过readFromLocalLog查询数据日志

二、遍历请求中需要拉取数据的主题分区集合,分别执行查询数据操作,

scala 复制代码
 /**
   * Read from multiple topic partitions at the given offset up to maxSize bytes
   * 以给定的偏移量从多个主题分区读取最大最大大小字节
   */
  def readFromLocalLog(
    params: FetchParams,
    readPartitionInfo: Seq[(TopicIdPartition, PartitionData)],
    quota: ReplicaQuota,
    readFromPurgatory: Boolean
  ): Seq[(TopicIdPartition, LogReadResult)] = {
    val traceEnabled = isTraceEnabled

    def read(tp: TopicIdPartition, fetchInfo: PartitionData, limitBytes: Int, minOneMessage: Boolean): LogReadResult = {
      //从fetchInfo中获取一些数据,包括fetchOffset(拉取偏移量)、maxBytes(拉取的最大字节数)和logStartOffset(日志起始偏移量)。
      val offset = fetchInfo.fetchOffset
      val partitionFetchSize = fetchInfo.maxBytes
      val followerLogStartOffset = fetchInfo.logStartOffset
      //计算调整后的最大字节数adjustedMaxBytes,取fetchInfo.maxBytes和limitBytes的较小值。
      val adjustedMaxBytes = math.min(fetchInfo.maxBytes, limitBytes)
      try {
        if (traceEnabled)
          trace(s"Fetching log segment for partition $tp, offset $offset, partition fetch size $partitionFetchSize, " +
            s"remaining response limit $limitBytes" +
            (if (minOneMessage) s", ignoring response/partition size limits" else ""))
        //获取指定分区的Partition对象
        val partition = getPartitionOrException(tp.topicPartition)
        //获取当前时间戳fetchTimeMs
        val fetchTimeMs = time.milliseconds

        //检查拉取请求或会话中的主题ID是否与日志中的主题ID一致,如果不一致则抛出InconsistentTopicIdException异常。
        val topicId = if (tp.topicId == Uuid.ZERO_UUID) None else Some(tp.topicId)
        if (!hasConsistentTopicId(topicId, partition.topicId))
          throw new InconsistentTopicIdException("Topic ID in the fetch session did not match the topic ID in the log.")
        // If we are the leader, determine the preferred read-replica
        //根据一些条件选择合适的副本(replica)进行后续的数据抓取(fetch)。
        val preferredReadReplica = params.clientMetadata.asScala.flatMap(
          metadata => findPreferredReadReplica(partition, metadata, params.replicaId, fetchInfo.fetchOffset, fetchTimeMs))

        if (preferredReadReplica.isDefined) {
          //如果不存在,则跳过读取操作,直接构建一个LogReadResult对象,表示从非Leader副本获取数据的结果。
          replicaSelectorOpt.foreach { selector =>
            debug(s"Replica selector ${selector.getClass.getSimpleName} returned preferred replica " +
              s"${preferredReadReplica.get} for ${params.clientMetadata}")
          }
          // If a preferred read-replica is set, skip the read
          val offsetSnapshot = partition.fetchOffsetSnapshot(fetchInfo.currentLeaderEpoch, fetchOnlyFromLeader = false)
          LogReadResult(info = new FetchDataInfo(LogOffsetMetadata.UNKNOWN_OFFSET_METADATA, MemoryRecords.EMPTY),
            divergingEpoch = None,
            highWatermark = offsetSnapshot.highWatermark.messageOffset,
            leaderLogStartOffset = offsetSnapshot.logStartOffset,
            leaderLogEndOffset = offsetSnapshot.logEndOffset.messageOffset,
            followerLogStartOffset = followerLogStartOffset,
            fetchTimeMs = -1L,
            lastStableOffset = Some(offsetSnapshot.lastStableOffset.messageOffset),
            preferredReadReplica = preferredReadReplica,
            exception = None)
        } else {
          // Try the read first, this tells us whether we need all of adjustedFetchSize for this partition
          //尝试进行读取操作。根据读取结果构建一个LogReadResult对象,表示从分区获取数据的结果。
          val readInfo: LogReadInfo = partition.fetchRecords(
            fetchParams = params,
            fetchPartitionData = fetchInfo,
            fetchTimeMs = fetchTimeMs,
            maxBytes = adjustedMaxBytes,
            minOneMessage = minOneMessage,
            updateFetchState = !readFromPurgatory
          )

          val fetchDataInfo = if (params.isFromFollower && shouldLeaderThrottle(quota, partition, params.replicaId)) {
            // If the partition is being throttled, simply return an empty set.
            new FetchDataInfo(readInfo.fetchedData.fetchOffsetMetadata, MemoryRecords.EMPTY)
          } else if (!params.hardMaxBytesLimit && readInfo.fetchedData.firstEntryIncomplete) {
            // For FetchRequest version 3, we replace incomplete message sets with an empty one as consumers can make
            // progress in such cases and don't need to report a `RecordTooLargeException`
            new FetchDataInfo(readInfo.fetchedData.fetchOffsetMetadata, MemoryRecords.EMPTY)
          } else {
            readInfo.fetchedData
          }
          //返回构建的LogReadResult对象
          LogReadResult(info = fetchDataInfo,
            divergingEpoch = readInfo.divergingEpoch.asScala,
            highWatermark = readInfo.highWatermark,
            leaderLogStartOffset = readInfo.logStartOffset,
            leaderLogEndOffset = readInfo.logEndOffset,
            followerLogStartOffset = followerLogStartOffset,
            fetchTimeMs = fetchTimeMs,
            lastStableOffset = Some(readInfo.lastStableOffset),
            preferredReadReplica = preferredReadReplica,
            exception = None
          )
        }
      } catch {
      //省略代码
      }
    }

    var limitBytes = params.maxBytes
    val result = new mutable.ArrayBuffer[(TopicIdPartition, LogReadResult)]
    var minOneMessage = !params.hardMaxBytesLimit
    readPartitionInfo.foreach { case (tp, fetchInfo) =>
      val readResult = read(tp, fetchInfo, limitBytes, minOneMessage)
      //记录批量的大小(以字节为单位)。
      val recordBatchSize = readResult.info.records.sizeInBytes
      // Once we read from a non-empty partition, we stop ignoring request and partition level size limits
      //如果 recordBatchSize 大于 0,则将 minOneMessage 设置为 false,表示从非空分区读取了消息,不再忽略请求和分区级别的大小限制。
      if (recordBatchSize > 0)
        minOneMessage = false
      limitBytes = math.max(0, limitBytes - recordBatchSize)
      //将 (tp -> readResult) 添加到 result 中
      result += (tp -> readResult)
    }
    result
  }

val readResult = read(tp, fetchInfo, limitBytes, minOneMessage)遍历主题分区分别执行read内部函数执行查询操作

方法内部通过partition.fetchRecords查询数据

1、会选择合适的副本读取本地日志数据(2.4版本后支持主题分区多副本下的读写分离)

在上面readFromLocalLog方法中,read内部方法

scala 复制代码
val preferredReadReplica = params.clientMetadata.asScala.flatMap(
          metadata => findPreferredReadReplica(partition, metadata, params.replicaId, fetchInfo.fetchOffset, fetchTimeMs))
scala 复制代码
def findPreferredReadReplica(partition: Partition,
                               clientMetadata: ClientMetadata,
                               replicaId: Int,
                               fetchOffset: Long,
                               currentTimeMs: Long): Option[Int] = {
    //partition.leaderIdIfLocal返回一个Option[Int]类型的值,表示分区的领导者副本的ID。
    // 如果本地是领导者副本,则返回该副本的ID,否则返回None。
    partition.leaderIdIfLocal.flatMap { leaderReplicaId =>
      // Don't look up preferred for follower fetches via normal replication
      //如果存在领导者副本ID(leaderReplicaId),则执行flatMap中的代码块;否则直接返回None。
      if (FetchRequest.isValidBrokerId(replicaId))
        None
      else {
        replicaSelectorOpt.flatMap { replicaSelector =>
          //通过metadataCache.getPartitionReplicaEndpoints方法获取分区副本的端点信息
          val replicaEndpoints = metadataCache.getPartitionReplicaEndpoints(partition.topicPartition,
            new ListenerName(clientMetadata.listenerName))
          //创建一个可变的mutable.Set[ReplicaView]类型的集合replicaInfoSet,用于存储符合条件的副本信息。
          val replicaInfoSet = mutable.Set[ReplicaView]()
          //遍历分区的远程副本集合(partition.remoteReplicas),对每个副本进行以下操作:
          //获取副本的状态快照(replica.stateSnapshot)。
          //如果副本的brokerId存在于ISR中,并且副本的日志范围包含了指定的fetchOffset,则将副本信息添加到replicaInfoSet中。
          partition.remoteReplicas.foreach { replica =>
            val replicaState = replica.stateSnapshot
            if (partition.inSyncReplicaIds.contains(replica.brokerId) &&
                replicaState.logEndOffset >= fetchOffset &&
                replicaState.logStartOffset <= fetchOffset) {

              replicaInfoSet.add(new DefaultReplicaView(
                replicaEndpoints.getOrElse(replica.brokerId, Node.noNode()),
                replicaState.logEndOffset,
                currentTimeMs - replicaState.lastCaughtUpTimeMs
              ))
            }
          }
          //创建一个DefaultReplicaView对象,表示领导者副本的信息,并将其添加到replicaInfoSet中。
          val leaderReplica = new DefaultReplicaView(
            replicaEndpoints.getOrElse(leaderReplicaId, Node.noNode()),
            partition.localLogOrException.logEndOffset,
            0L
          )
          replicaInfoSet.add(leaderReplica)
          //创建一个DefaultPartitionView对象,表示分区的信息,其中包含了副本信息集合和领导者副本信息。
          val partitionInfo = new DefaultPartitionView(replicaInfoSet.asJava, leaderReplica)
          //调用replicaSelector.select方法,根据特定的策略选择合适的副本。然后通过collect方法将选择的副本转换为副本的ID集合。
          replicaSelector.select(partition.topicPartition, clientMetadata, partitionInfo).asScala.collect {
            // Even though the replica selector can return the leader, we don't want to send it out with the
            // FetchResponse, so we exclude it here
            //从副本的ID集合中排除领导者副本,并返回剩余副本的ID集合。
            case selected if !selected.endpoint.isEmpty && selected != leaderReplica => selected.endpoint.id
          }
        }
      }
    }
  }

其中 replicaSelector.select(partition.topicPartition, clientMetadata, partitionInfo).asScala.collect选合适副本默认首先Leader副本,但是2.4版本后支持主题分区非Leader副本中读取数据,即Follower副本读取数据

在代码上:

  • 通过case selected if !selected.endpoint.isEmpty && selected != leaderReplica => selected.endpoint.id 判断设置,

在配置上:

  • broker端,需要配置参数 replica.selector.class,其默认配置为LeaderSelector,意思是:消费者从首领副本获取消息,改为RackAwareReplicaSelector,即消费者按照指定的rack id上的副本进行消费。还需要配置broker.rack参数,用来指定broker在哪个机房。
  • consumer端,需要配置参数client.rack,且这个参数和broker端的哪个broker.rack匹配上,就会从哪个broker上去获取消息数据。

读写分离在2.4之前为什么之前不支持,后面支持了呢?

之前不支持的原因:其实对于kakfa而言,主题分区的水平扩展完全可以解决消息的处理量,增加broker也可以降低系统负载,所以没有必要费力不讨好增加一个读写分离。
现在支持的原因:有一种场景不是很适合,跨机房或者说跨数据中心的场景 ,当其中一个数据中心需要向另一个数据中心同步数据的时候,如果只能从首领副本进行数据读取的话,需要跨机房来完成,而这些流量带宽又比较昂贵 ,而利用本地跟随者副本进行消息读取就成了比较明智的选择。

所以kafka推出这一个功能,目的并不是 降低broker的系统负载,分摊消息处理量,而是为了节约流量资源

三、会判断当前请求是主题分区Follower发送的拉取数据请求还是消费者客户端拉取数据请求

关于Follower发请求可以看一下kafka 3.5 主题分区的Follower创建Fetcher线程从Leader拉取数据源码

scala 复制代码
def fetchRecords(
    fetchParams: FetchParams,
    fetchPartitionData: FetchRequest.PartitionData,
    fetchTimeMs: Long,
    maxBytes: Int,
    minOneMessage: Boolean,
    updateFetchState: Boolean
  ): LogReadInfo = {
    def readFromLocalLog(log: UnifiedLog): LogReadInfo = {
      readRecords(
        log,
        fetchPartitionData.lastFetchedEpoch,
        fetchPartitionData.fetchOffset,
        fetchPartitionData.currentLeaderEpoch,
        maxBytes,
        fetchParams.isolation,
        minOneMessage
      )
    }
    //判断获取数据的请求是否来自Follower
    if (fetchParams.isFromFollower) {
      // Check that the request is from a valid replica before doing the read
      val (replica, logReadInfo) = inReadLock(leaderIsrUpdateLock) {
        val localLog = localLogWithEpochOrThrow(
          fetchPartitionData.currentLeaderEpoch,
          fetchParams.fetchOnlyLeader
        )
        val replica = followerReplicaOrThrow(
          fetchParams.replicaId,
          fetchPartitionData
        )
        val logReadInfo = readFromLocalLog(localLog)
        (replica, logReadInfo)
      }

      if (updateFetchState && !logReadInfo.divergingEpoch.isPresent) {
        updateFollowerFetchState(
          replica,
          followerFetchOffsetMetadata = logReadInfo.fetchedData.fetchOffsetMetadata,
          followerStartOffset = fetchPartitionData.logStartOffset,
          followerFetchTimeMs = fetchTimeMs,
          leaderEndOffset = logReadInfo.logEndOffset,
          fetchParams.replicaEpoch
        )
      }

      logReadInfo
    } else {
      //来自消费者客户端请求
      inReadLock(`leaderIsrUpdateLock`) {
        val localLog = localLogWithEpochOrThrow(
          fetchPartitionData.currentLeaderEpoch,
          fetchParams.fetchOnlyLeader
        )
        readFromLocalLog(localLog)
      }
    }
  }

1、拉取数据之前首先要得到leaderIsrUpdateLock的读锁

上面的方法逻辑中

scala 复制代码
//Follower的请求
 val (replica, logReadInfo) = inReadLock(leaderIsrUpdateLock) 
//来自消费者客户端请求
 inReadLock(`leaderIsrUpdateLock`) 

2、readFromLocalLog读取本地日志数据

scala 复制代码
 def readFromLocalLog(log: UnifiedLog): LogReadInfo = {
      readRecords(
        log,
        fetchPartitionData.lastFetchedEpoch,
        fetchPartitionData.fetchOffset,
        fetchPartitionData.currentLeaderEpoch,
        maxBytes,
        fetchParams.isolation,
        minOneMessage
      )
    }

四、读取日志数据就是读取的segment文件(忽视零拷贝的加持)

1、获取当前本地日志的基础数据(高水位线,偏移量等),

scala 复制代码
private def readRecords(
    localLog: UnifiedLog,
    lastFetchedEpoch: Optional[Integer],
    fetchOffset: Long,
    currentLeaderEpoch: Optional[Integer],
    maxBytes: Int,
    fetchIsolation: FetchIsolation,
    minOneMessage: Boolean
  ): LogReadInfo = {
    //localLog的高水位标记(initialHighWatermark)、、。
    val initialHighWatermark = localLog.highWatermark
    //日志起始偏移(initialLogStartOffset)
    val initialLogStartOffset = localLog.logStartOffset
    //日志结束偏移(initialLogEndOffset)
    val initialLogEndOffset = localLog.logEndOffset
    //和最后一个稳定偏移(initialLastStableOffset)
    val initialLastStableOffset = localLog.lastStableOffset

   //省略代码
    //代码调用localLog的read方法,读取指定偏移量处的数据
    val fetchedData = localLog.read(
      fetchOffset,
      maxBytes,
      fetchIsolation,
      minOneMessage
    )
    //返回一个包含读取数据的LogReadInfo对象。
    new LogReadInfo(
      fetchedData,
      Optional.empty(),
      initialHighWatermark,
      initialLogStartOffset,
      initialLogEndOffset,
      initialLastStableOffset
    )
  }
scala 复制代码
 def read(startOffset: Long,
           maxLength: Int,
           isolation: FetchIsolation,
           minOneMessage: Boolean): FetchDataInfo = {
    checkLogStartOffset(startOffset)
    val maxOffsetMetadata = isolation match {
      case FetchIsolation.LOG_END => localLog.logEndOffsetMetadata
      case FetchIsolation.HIGH_WATERMARK => fetchHighWatermarkMetadata
      case FetchIsolation.TXN_COMMITTED => fetchLastStableOffsetMetadata
    }
    localLog.read(startOffset, maxLength, minOneMessage, maxOffsetMetadata, isolation == FetchIsolation.TXN_COMMITTED)
  }

2、遍历segment,直到从segment读取到数据

scala 复制代码
/*
   *
   * @param startOffset   起始偏移量(startOffset)
   * @param maxLength  最大长度(maxLength)
   * @param minOneMessage  是否至少读取一个消息(minOneMessage)
   * @param maxOffsetMetadata  最大偏移元数据(maxOffsetMetadata)
   * @param includeAbortedTxns   是否包含已中止的事务(includeAbortedTxns)
   * @throws
   * @return  返回一个FetchDataInfo对象
   */
  def read(startOffset: Long,
           maxLength: Int,
           minOneMessage: Boolean,
           maxOffsetMetadata: LogOffsetMetadata,
           includeAbortedTxns: Boolean): FetchDataInfo = {
    maybeHandleIOException(s"Exception while reading from $topicPartition in dir ${dir.getParent}") {
      trace(s"Reading maximum $maxLength bytes at offset $startOffset from log with " +
        s"total length ${segments.sizeInBytes} bytes")
      //获取下一个偏移元数据(endOffsetMetadata)和对应的偏移量(endOffset)
      val endOffsetMetadata = nextOffsetMetadata
      val endOffset = endOffsetMetadata.messageOffset
      //获得segment的集合,比如会获得某个位点后所有的segment的列表,有序
      var segmentOpt = segments.floorSegment(startOffset)

      // return error on attempt to read beyond the log end offset
      //如果起始偏移量大于结束偏移量或者找不到日志段,则抛出OffsetOutOfRangeException异常。
      if (startOffset > endOffset || segmentOpt.isEmpty)
        throw new OffsetOutOfRangeException(s"Received request for offset $startOffset for partition $topicPartition, " +
          s"but we only have log segments upto $endOffset.")
      //如果起始偏移量等于最大偏移量元数据的偏移量,函数返回一个空的FetchDataInfo对象
      if (startOffset == maxOffsetMetadata.messageOffset)
        emptyFetchDataInfo(maxOffsetMetadata, includeAbortedTxns)
      else if (startOffset > maxOffsetMetadata.messageOffset)
      //如果起始偏移量大于最大偏移量元数据的偏移量,函数返回一个空的FetchDataInfo对象,并将起始偏移量转换为偏移元数据
        emptyFetchDataInfo(convertToOffsetMetadataOrThrow(startOffset), includeAbortedTxns)
      else {
        //函数在小于目标偏移量的基本偏移量的日志段上进行读取
        var fetchDataInfo: FetchDataInfo = null
        //首先fetchDataInfo不为null,和大于start位点的segment要存在
        while (fetchDataInfo == null && segmentOpt.isDefined) {
          val segment = segmentOpt.get
          val baseOffset = segment.baseOffset
          val maxPosition =
          // Use the max offset position if it is on this segment; otherwise, the segment size is the limit.
          //如果它在此段上,请使用最大偏移位置;否则,段大小是限制。
            if (maxOffsetMetadata.segmentBaseOffset == segment.baseOffset) maxOffsetMetadata.relativePositionInSegment
            else segment.size

          fetchDataInfo = segment.read(startOffset, maxLength, maxPosition, minOneMessage)
          if (fetchDataInfo != null) {
            //则根据条件判断,如果includeAbortedTxns为真,则调用addAbortedTransactions方法添加中断的事务到fetchDataInfo中。
            if (includeAbortedTxns)
              fetchDataInfo = addAbortedTransactions(startOffset, segment, fetchDataInfo)
          }
          //如果fetchDataInfo为null,则将segmentOpt设置为segments中大于baseOffset的下一个段。
          else segmentOpt = segments.higherSegment(baseOffset)
        }
        //成功读取到消息,函数返回FetchDataInfo对象
        if (fetchDataInfo != null) fetchDataInfo
        else {
          //如果已经超过了最后一个日志段的末尾且没有读取到任何数据,则返回一个空的FetchDataInfo对象,其中包含下一个偏移元数据和空的内存记录(MemoryRecords.EMPTY)
          new FetchDataInfo(nextOffsetMetadata, MemoryRecords.EMPTY)
        }
      }
    }
  }

首先获得segment列表var segmentOpt = segments.floorSegment(startOffset)

通过 fetchDataInfo = segment.read(startOffset, maxLength, maxPosition, minOneMessage) 从segment获取数据

五、创建文件日志流对象FileRecords

scala 复制代码
  def read(startOffset: Long,
           maxSize: Int,
           maxPosition: Long = size,
           minOneMessage: Boolean = false): FetchDataInfo = {
    if (maxSize < 0)
      throw new IllegalArgumentException(s"Invalid max size $maxSize for log read from segment $log")

    val startOffsetAndSize = translateOffset(startOffset)

    // if the start position is already off the end of the log, return null
    //则表示起始位置已经超出了日志的末尾,则返回 null
    if (startOffsetAndSize == null)
      return null
    //起始偏移量、基准偏移量和起始位置创建一个LogOffsetMetadata对象
    val startPosition = startOffsetAndSize.position
    val offsetMetadata = new LogOffsetMetadata(startOffset, this.baseOffset, startPosition)

    val adjustedMaxSize =
      if (minOneMessage) math.max(maxSize, startOffsetAndSize.size)
      else maxSize

    // return a log segment but with zero size in the case below
    if (adjustedMaxSize == 0)
      return new FetchDataInfo(offsetMetadata, MemoryRecords.EMPTY)

    // calculate the length of the message set to read based on whether or not they gave us a maxOffset
    //根据给定的maxOffset计算要读取的消息集的长度,将其限制为maxPosition和起始位置之间的较小值,并将结果赋给fetchSize变量。
    val fetchSize: Int = min((maxPosition - startPosition).toInt, adjustedMaxSize)
    //创建一个FetchDataInfo对象,其中包含偏移量元数据、从起始位置开始的指定大小的日志切片(log slice)以及其他相关信息
  //其中log.slice(startPosition, fetchSize)是日志数据
    new FetchDataInfo(offsetMetadata, log.slice(startPosition, fetchSize),
      adjustedMaxSize < startOffsetAndSize.size, Optional.empty())
  }

log.slice 获取文件数据

scala 复制代码
 public FileRecords slice(int position, int size) throws IOException {
        int availableBytes = availableBytes(position, size);
        int startPosition = this.start + position;
        return new FileRecords(file, channel, startPosition, startPosition + availableBytes, true);
    }

这里生成一个新的文件数据对象,下面就是FileRecords的构造方法

scala 复制代码
        FileRecords(File file,
                FileChannel channel,
                int start,
                int end,
                boolean isSlice) throws IOException {
        this.file = file;
        this.channel = channel;
        this.start = start;
        this.end = end;
        this.isSlice = isSlice;
        this.size = new AtomicInteger();
        //表示这只是一个切片视图,不需要检查文件大小,直接将size设置为end - start。
        if (isSlice) {
            // don't check the file size if this is just a slice view
            size.set(end - start);
        } else {
            //如果isSlice为false,表示这不是一个切片,需要检查文件的大小。如果文件大小超过了Integer.MAX_VALUE,将抛出KafkaException异常。
            if (channel.size() > Integer.MAX_VALUE)
                throw new KafkaException("The size of segment " + file + " (" + channel.size() +
                        ") is larger than the maximum allowed segment size of " + Integer.MAX_VALUE);
            //否则,将文件大小和end之间的较小值设置为limit,并将size设置为limit - start。然后,将文件通道的位置设置为limit,即文件末尾的位置。
            int limit = Math.min((int) channel.size(), end);
            size.set(limit - start);

            // if this is not a slice, update the file pointer to the end of the file
            // set the file position to the last byte in the file
            channel.position(limit);
        }

        batches = batchesFrom(start);
  }

1、根据位点创建文件流FileLogInputStream

scala 复制代码
 /**
     * Get an iterator over the record batches in the file, starting at a specific position. This is similar to
     * {@link #batches()} except that callers specify a particular position to start reading the batches from. This
     * method must be used with caution: the start position passed in must be a known start of a batch.
     * @param start The position to start record iteration from; must be a known position for start of a batch
     * @return An iterator over batches starting from {@code start}
     */
 //它的作用是从FileRecords直接返回一个batch的iterator   
public Iterable<FileChannelRecordBatch> batchesFrom(final int start) {
        return () -> batchIterator(start);
 }
 private AbstractIterator<FileChannelRecordBatch> batchIterator(int start) {
        final int end;
        if (isSlice)
            end = this.end;
        else
            end = this.sizeInBytes();
        //创建一个FileLogInputStream对象inputStream,并传入this、start和end作为参数。
        FileLogInputStream inputStream = new FileLogInputStream(this, start, end);
        //创建一个RecordBatchIterator对象,并将inputStream作为参数传入。
        //将创建的RecordBatchIterator对象作为返回值返回。
        return new RecordBatchIterator<>(inputStream);
    } 
}       

FileLogInputStream类实现了nextBatch()接口,这个接口是从基础输入流中获取下一个记录批次。

scala 复制代码
public class FileLogInputStream implements LogInputStream<FileLogInputStream.FileChannelRecordBatch> {

 /**
     * Create a new log input stream over the FileChannel
     * @param records Underlying FileRecords instance
     * @param start Position in the file channel to start from
     * @param end Position in the file channel not to read past
     */
    FileLogInputStream(FileRecords records,
                       int start,
                       int end) {
        this.fileRecords = records;
        this.position = start;
        this.end = end;
    }

    @Override
    public FileChannelRecordBatch nextBatch() throws IOException {
        //首先获取文件的通道(channel)
        FileChannel channel = fileRecords.channel();
        //检查是否达到了文件末尾或者下一个记录批次的起始位置。如果达到了文件末尾,则返回空(null)。
        if (position >= end - HEADER_SIZE_UP_TO_MAGIC)
            return null;
        //读取文件通道中的记录头部数据,并将其存储在一个缓冲区(logHeaderBuffer)
        logHeaderBuffer.rewind();
        Utils.readFullyOrFail(channel, logHeaderBuffer, position, "log header");
        //记录头部数据中解析出偏移量(offset)和记录大小(size)
        logHeaderBuffer.rewind();
        long offset = logHeaderBuffer.getLong(OFFSET_OFFSET);
        int size = logHeaderBuffer.getInt(SIZE_OFFSET);

        // V0 has the smallest overhead, stricter checking is done later
        if (size < LegacyRecord.RECORD_OVERHEAD_V0)
            throw new CorruptRecordException(String.format("Found record size %d smaller than minimum record " +
                            "overhead (%d) in file %s.", size, LegacyRecord.RECORD_OVERHEAD_V0, fileRecords.file()));
        //检查是否已经超过了文件末尾减去记录开销和记录大小的位置。如果超过了,则返回空(null)
        if (position > end - LOG_OVERHEAD - size)
            return null;
        //代码会根据记录头部的(magic)
        byte magic = logHeaderBuffer.get(MAGIC_OFFSET);
        //创建一个记录批次对象(batch)
        final FileChannelRecordBatch batch;

        if (magic < RecordBatch.MAGIC_V个LUE_V2)
            //则创建一个旧版本的记录批次对象
            batch = new LegacyFileChannelRecordBatch(offset, magic, fileRecords, position, size);
        else
            //否则创建一个默认版本的记录批次对象
            batch = new DefaultFileChannelRecordBatch(offset, magic, fileRecords, position, size);
        //代码会更新当前位置(position),以便下次读取下一个记录批次。
        position += batch.sizeInBytes();
        return batch;
    }
}    

2、把文件流构建成数据批量迭代器对象RecordBatchIterator

上文中的batchIterator方法会把文件流构造RecordBatchIterator对象

scala 复制代码
class RecordBatchIterator<T extends RecordBatch> extends AbstractIterator<T> {

    private final LogInputStream<T> logInputStream;

    RecordBatchIterator(LogInputStream<T> logInputStream) {
        this.logInputStream = logInputStream;
    }

    @Override
    protected T makeNext() {
        try {
            T batch = logInputStream.nextBatch();
            if (batch == null)
                return allDone();
            return batch;
        } catch (EOFException e) {
            throw new CorruptRecordException("Unexpected EOF while attempting to read the next batch", e);
        } catch (IOException e) {
            throw new KafkaException(e);
        }
    }
}

AbstractIterator抽象类

scala 复制代码
public abstract class AbstractIterator<T> implements Iterator<T> {

    private enum State {
        READY, NOT_READY, DONE, FAILED
    }

    private State state = State.NOT_READY;
    private T next;

    @Override
    public boolean hasNext() {
        switch (state) {
            case FAILED:
                throw new IllegalStateException("Iterator is in failed state");
            case DONE:
                return false;
            case READY:
                return true;
            default:
                return maybeComputeNext();
        }
    }

    @Override
    public T next() {
        if (!hasNext())
            throw new NoSuchElementException();
        state = State.NOT_READY;
        if (next == null)
            throw new IllegalStateException("Expected item but none found.");
        return next;
    }

    @Override
    public void remove() {
        throw new UnsupportedOperationException("Removal not supported");
    }

    public T peek() {
        if (!hasNext())
            throw new NoSuchElementException();
        return next;
    }

    protected T allDone() {
        state = State.DONE;
        return null;
    }

    protected abstract T makeNext();

    private Boolean maybeComputeNext() {
        state = State.FAILED;
        next = makeNext();
        if (state == State.DONE) {
            return false;
        } else {
            state = State.READY;
            return true;
        }
    }

}

调用RecordBatchIterator类的makeNext()方法,之后调用第五章节的FileLogInputStream中的nextBatch()

DefaultFileChannelRecordBatch这个是默认的

scala 复制代码
static class DefaultFileChannelRecordBatch extends FileLogInputStream.FileChannelRecordBatch {

        DefaultFileChannelRecordBatch(long offset,
                                      byte magic,
                                      FileRecords fileRecords,
                                      int position,
                                      int batchSize) {
            super(offset, magic, fileRecords, position, batchSize);
        }

        @Override
        protected RecordBatch toMemoryRecordBatch(ByteBuffer buffer) {
            return new DefaultRecordBatch(buffer);
        }

        @Override
        public long baseOffset() {
            return offset;
        }
		//省略代码
        
    }

3、DefaultRecordBatch实现iterator方法,在内存中创建数据

之后看一下哪里调用的DefaultFileChannelRecordBatch中的toMemoryRecordBatch方法

DefaultRecordBatch,再通过这个batchiterator方法获取到Iterator<Record>

scala 复制代码
public class DefaultRecordBatch extends AbstractRecordBatch implements MutableRecordBatch {

    @Override 
    public Iterator<Record> iterator() {
        if (count() == 0)
            return Collections.emptyIterator();

        if (!isCompressed())
            return uncompressedIterator();

        // for a normal iterator, we cannot ensure that the underlying compression stream is closed,
        // so we decompress the full record set here. Use cases which call for a lower memory footprint
        // can use `streamingIterator` at the cost of additional complexity
        try (CloseableIterator<Record> iterator = compressedIterator(BufferSupplier.NO_CACHING, false)) {
            List<Record> records = new ArrayList<>(count());
            while (iterator.hasNext())
                records.add(iterator.next());
            return records.iterator();
        }
    }
}    

DefaultFileChannelRecordBatchFileChannelRecordBatch的一个子类。FileChannelRecordBatch表示日志是通过FileChannel的形式来保存的。在遍历日志的时候不需要将日志全部读到内存中,而是在需要的时候再读取。我们直接看最重要的iterator方法

scala 复制代码
public abstract static class FileChannelRecordBatch extends AbstractRecordBatch {
        protected final long offset;
        protected final byte magic;
        protected final FileRecords fileRecords;
        protected final int position;
        protected final int batchSize;

        private RecordBatch fullBatch;
        private RecordBatch batchHeader;

        FileChannelRecordBatch(long offset,
                               byte magic,
                               FileRecords fileRecords,
                               int position,
                               int batchSize) {
            this.offset = offset;
            this.magic = magic;
            this.fileRecords = fileRecords;
            this.position = position;
            this.batchSize = batchSize;
        }

      	//省略代码
        @Override
        public Iterator<Record> iterator() {
            return loadFullBatch().iterator();
        }
		//省略代码
   }     
scala 复制代码
 protected RecordBatch loadFullBatch() {
            if (fullBatch == null) {
                batchHeader = null;
                fullBatch = loadBatchWithSize(sizeInBytes(), "full record batch");
            }
            return fullBatch;
        }

最后会调用DefaultFileChannelRecordBatch类型的toMemoryRecordBatch方法在内存中生成批量数据

scala 复制代码
   private RecordBatch loadBatchWithSize(int size, String description) {
            FileChannel channel = fileRecords.channel();
            try {
                ByteBuffer buffer = ByteBuffer.allocate(size);
                Utils.readFullyOrFail(channel, buffer, position, description);
                buffer.rewind();
                //在内存中生成数据
                return toMemoryRecordBatch(buffer);
            } catch (IOException e) {
                throw new KafkaException("Failed to load record batch at position " + position + " from " + fileRecords, e);
            }
        }
相关推荐
天冬忘忧2 分钟前
Kafka 数据倾斜:原因、影响与解决方案
分布式·kafka
隔着天花板看星星6 分钟前
Kafka-Consumer理论知识
大数据·分布式·中间件·kafka
holywangle7 分钟前
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
大数据·flink·kafka
隔着天花板看星星8 分钟前
Kafka-副本分配策略
大数据·分布式·中间件·kafka
我一直在流浪1 小时前
Kafka - 消费者程序仅消费一半分区消息的问题
分布式·kafka
B站计算机毕业设计超人3 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
Mephisto.java7 小时前
【大数据学习 | Spark】Spark的改变分区的算子
大数据·elasticsearch·oracle·spark·kafka·memcache
KevinAha14 小时前
Kafka 3.5 源码导读
kafka
求积分不加C14 小时前
-bash: ./kafka-topics.sh: No such file or directory--解决方案
分布式·kafka
nathan052914 小时前
javaer快速上手kafka
分布式·kafka