机器学习——boosting之GBDT

现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索!

GBDT,Gradient Boosting Decision Tree: 梯度提升决策树

果然信息很丰富

梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的

提升:意味着前向分布式+加法模型,并且分类器之间是有相关提升的

决策树:CART决策树、C4.5、忘记名字了...

em...还是要再深挖深挖,小小的boosting,挖呀挖呀挖呀挖。。。

经过推导。。。发现,我的GBDT回归,实际就是上一篇提升树的二叉回归树...

看来可以省点儿功夫,不写代码,但可以稍微推导一下

首先,明确回归问题采用平方损失函数: L o s s ( y , f ( x ) ) = ( y − f ( x ) ) 2 Loss(y,f(x)) =(y-f(x))^2 Loss(y,f(x))=(y−f(x))2

其中,f(x) 是强分类器,且当前强分类器 f m = f m − 1 + T m ( x , θ m ) f_m = f_{m-1}+T_m(x,θ_m) fm=fm−1+Tm(x,θm)

问题来了,我们现在要求Loss最小,原本是可以直接使Loss对x求导,进而求出θ,得到强分类器的

但书上说了,有时候Loss对x求导,是无法实现的,说实话,我不知道为什么

不过,不妨碍我对GBDT进行推导

首先,梯度,是想要Loss成梯度逐步下降,那就采用让Loss在 f ( x ) = f m − 1 ( x ) f(x)=f_{m-1}(x) f(x)=fm−1(x)处进行一阶泰勒展开

则有 L o s s ( y , f ( x ) ) = L o s s ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f ( x ) − f m − 1 ( x ) ] Loss(y,f(x)) = Loss(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f(x)-f_{m-1}(x)] Loss(y,f(x))=Loss(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[f(x)−fm−1(x)]

令 f ( x ) = f m ( x ) f(x) = f_m(x) f(x)=fm(x),则有

L ( y , f m ( x ) ) = L ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] L(y,f_m(x)) = L(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] L(y,fm(x))=L(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]

Δ L o s s = L ( y , f m ( x ) ) − L ( y , f m − 1 ( x ) ) = ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] ΔLoss = L(y,f_m(x)) - L(y,f_{m-1}(x))=\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] ΔLoss=L(y,fm(x))−L(y,fm−1(x))=əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]

其中 [ f m ( x ) − f m − 1 ( x ) ] = T ( x , θ m ) [f_m(x)-f_{m-1}(x)] = T(x,θ_m) [fm(x)−fm−1(x)]=T(x,θm)

要使下一次迭代时,Loss降低,则需要ΔLoss<0,那么对应的 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0

那么,当 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))时,就可以保证 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0

因此, T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)ə(y−fm−1(x))2

为了求解简洁美观,可以 令 L o s s 为 1 2 ( y − f ( x ) ) 2 令Loss为\frac{1}{2}(y-f(x))^2 令Loss为21(y−f(x))2

这样 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = 1 2 ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) = y − f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{\frac{1}{2}ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}}=y-f_{m-1}(x) T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)21ə(y−fm−1(x))2=y−fm−1(x)

哦!这不就是残差嘛 r = y − f m − 1 ( x ) r = y-f_{m-1}(x) r=y−fm−1(x) ,相当于每个新的弱分类器(准确来说,应该是基函数)都应该尽可能地去拟合残差

所以啊!!!!实际上一轮的提升树,本质上就是GBDT

不管,就先这么确定,以后打脸再说...好困

相关推荐
985小水博一枚呀3 小时前
【深度学习|可视化】如何以图形化的方式展示神经网络的结构、训练过程、模型的中间状态或模型决策的结果??
人工智能·python·深度学习·神经网络·机器学习·计算机视觉·cnn
LluckyYH4 小时前
代码随想录Day 46|动态规划完结,leetcode题目:647. 回文子串、516.最长回文子序列
数据结构·人工智能·算法·leetcode·动态规划
古猫先生4 小时前
YMTC Xtacking 4.0(Gen5)技术深度分析
服务器·人工智能·科技·云计算
一水鉴天5 小时前
智能工厂的软件设计 “程序program”表达式,即 接口模型的代理模式表达式
开发语言·人工智能·中间件·代理模式
Hiweir ·6 小时前
机器翻译之创建Seq2Seq的编码器、解码器
人工智能·pytorch·python·rnn·深度学习·算法·lstm
Element_南笙6 小时前
数据结构_1、基本概念
数据结构·人工智能
FutureUniant6 小时前
GitHub每日最火火火项目(9.21)
人工智能·计算机视觉·ai·github·音视频
菜♕卷6 小时前
深度学习-03 Pytorch
人工智能·pytorch·深度学习
明明真系叻6 小时前
第十二周:机器学习笔记
人工智能·机器学习
跟着大数据和AI去旅行6 小时前
使用肘部法则确定K-Means中的k值
python·机器学习·kmeans