(笔记六)利用opencv进行图像滤波

(1)自定义卷积核图像滤波

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv


img_path = r"D:\data\test6-6.png"
img = cv.imread(img_path)

# 图像滤波
ker = np.ones((6, 6), np.float32)/36  # 构建滤波器(卷积层)
img1 = cv.filter2D(img, -1, ker)  # cv.filter2D(原图,深度,滤波器)

(2)函数卷积核图像滤波

  • 1、均值滤波和高斯模糊
python 复制代码
# 图像平滑
# 1、均值平滑
# 当卷积核大小与上面的图像滤波的滤波器一样时,其结果是一样的
img2 = cv.blur(img, (11, 11))  # cv.blur(原图,卷积核大小)
# img2 = cv.boxFilter(img, -1, (5, 5), normalize=False) # 与上述的结果相同,只是不采用标准化框

# 2、高斯模糊
# 单独指定x标准差,则y标准差等于x,若是两个都为0,则根据kszie进行计算
img3 = cv.GaussianBlur(img, (25, 25), 3)  # cv.GaussianBlur(原图,卷积核大小,x标准差==y标准差)
# 卷积核孔径的大小就是卷积核的高度,一般采用奇数
# 当高斯标准差sigma为负时,采用公式sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8
# ker1 = cv.getGaussianKernel(5, 0)  # getGaussianKernel(卷积核孔径的大小,高斯标准差)
# img3 = cv.filter2D(img, -1, ker1)  # 利用filter2D进行高斯平滑
  • 2、中值滤波
python 复制代码
# 3、中值平滑
# 对很多椒盐噪声很管用
median_img = cv.imread(r"D:\data\test6.png")
img4 = cv.medianBlur(median_img, 5)  # cv.medianBlur(原图,卷积核孔径大小)
  • 3、双边滤波
python 复制代码
# 4、双边滤波
# 适用于保存边缘,模糊局部
bli_imgg = cv.imread(r"D:\data\test6-6-6.png")
bli_img = cv.cvtColor(bli_imgg, cv.COLOR_BGR2RGB)
img5 = cv.bilateralFilter(bli_img, 30, 120, 120)
相关推荐
星期天要睡觉2 小时前
(纯新手教学)计算机视觉(opencv)实战十四——模板与多个对象匹配
人工智能·opencv·计算机视觉
淮北也生橘122 小时前
Linux的V4L2视频框架学习笔记
linux·笔记·学习·音视频·嵌入式linux
荼蘼3 小时前
openCV 角点检测与 SIFT 特征提取:原理与实战解析
人工智能·opencv·计算机视觉
ZZHow10243 小时前
微信小程序开发笔记(01_小程序基础与配置文件)
笔记·微信小程序·小程序
Monkey的自我迭代3 小时前
opencv特征检测
人工智能·opencv·计算机视觉
凯尔萨厮5 小时前
Java学习笔记四(继承)
java·笔记·学习
ホロHoro5 小时前
学习笔记:Javascript(5)——事件监听(用户交互)
javascript·笔记·学习
黎宇幻生10 小时前
Java全栈学习笔记33
java·笔记·学习
朗迹 - 张伟11 小时前
Golang安装笔记
开发语言·笔记·golang
张子夜 iiii13 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉