pytorch中nn.Conv1d功能介绍

在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话"深度学习"可以用一个一维数组 ['深', '度', '学', '习'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。

因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表示 (批量,通道,长度)

使用 Conv2d 函数时,输入是一个四维数组,四个维度分别是(批量,通道,行,列),这里不详细介绍Conv2d。

(批量即 batch_size)

用如下例子介绍Conv1d(input_channel=3, output_channel=4, kernel_size=1),输入的例子数据为一句话,这句话有5个单词,假设每个单词都由三个字母组成,就相当于每个单词有3个通道,假设这句话是 ['abc', 'def', 'ghi', 'jkl', 'mno'],这些数据放在图1所示的矩阵里,可见长度为5,深度方向为3。
图1. 数据存储格式

output_channel=4,即由四个卷积核,每个卷积核的通道数和输入的通道数相同,这里是3,如图2所示,第一个元素'abc'的三个通道'a', 'b', 'c'输入第一个卷积核,得到红色数字,第二个单词经过卷积核得到黄色数字,排成一列得到第一个通道,四个卷积核得到输出的四个通道。

如果一个batch里有很多句话,那么分别对每句话进行上述计算即可。
图2. 单个channel计算过程

测试代码:

输入数据的 batch_size=10,通道数为3,长度为5。卷积核大小为1,卷积核通道数和输入数据的通道数一致。输出数据通道数为7,卷积核的数量和输出数据的通道数一致。

因为卷积核大小为1,所以输出长度与输入长度一致,卷积不影响批量数(batch_size),因此输出数据的(批量,通道,长度)应为(10, 7, 5)

python 复制代码
from torch import nn

    conv1 = nn.Conv1d(in_channels=3, out_channels=7, kernel_size=1)
    input = torch.randn(10, 3, 5)
    out = conv1(input)
    print(out.size())

运行后的输出如下图所示,可见分析正确。

相关推荐
GISer_Jing6 分钟前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas969519 分钟前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
星依网络27 分钟前
yolov5实现游戏图像识别与后续辅助功能
python·开源·游戏程序·骨骼绑定
大佐不会说日语~1 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
2501_921649491 小时前
如何获取美股实时行情:Python 量化交易指南
开发语言·后端·python·websocket·金融
qq_448011161 小时前
python HTTP请求同时返回为JSON的异常处理
python·http·json
CeshirenTester1 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
棒棒的皮皮1 小时前
【OpenCV】Python图像处理几何变换之翻转
图像处理·python·opencv·计算机视觉
世岩清上2 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM2 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能