pytorch中nn.Conv1d功能介绍

在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话"深度学习"可以用一个一维数组 ['深', '度', '学', '习'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。

因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表示 (批量,通道,长度)

使用 Conv2d 函数时,输入是一个四维数组,四个维度分别是(批量,通道,行,列),这里不详细介绍Conv2d。

(批量即 batch_size)

用如下例子介绍Conv1d(input_channel=3, output_channel=4, kernel_size=1),输入的例子数据为一句话,这句话有5个单词,假设每个单词都由三个字母组成,就相当于每个单词有3个通道,假设这句话是 ['abc', 'def', 'ghi', 'jkl', 'mno'],这些数据放在图1所示的矩阵里,可见长度为5,深度方向为3。
图1. 数据存储格式

output_channel=4,即由四个卷积核,每个卷积核的通道数和输入的通道数相同,这里是3,如图2所示,第一个元素'abc'的三个通道'a', 'b', 'c'输入第一个卷积核,得到红色数字,第二个单词经过卷积核得到黄色数字,排成一列得到第一个通道,四个卷积核得到输出的四个通道。

如果一个batch里有很多句话,那么分别对每句话进行上述计算即可。
图2. 单个channel计算过程

测试代码:

输入数据的 batch_size=10,通道数为3,长度为5。卷积核大小为1,卷积核通道数和输入数据的通道数一致。输出数据通道数为7,卷积核的数量和输出数据的通道数一致。

因为卷积核大小为1,所以输出长度与输入长度一致,卷积不影响批量数(batch_size),因此输出数据的(批量,通道,长度)应为(10, 7, 5)

python 复制代码
from torch import nn

    conv1 = nn.Conv1d(in_channels=3, out_channels=7, kernel_size=1)
    input = torch.randn(10, 3, 5)
    out = conv1(input)
    print(out.size())

运行后的输出如下图所示,可见分析正确。

相关推荐
无敌最俊朗@几秒前
**HTTP/HTTPS基础** - URL结构(协议、域名、端口、路径、参数、锚点) - 请求方法(GET、POST) - 请求头/响应头 - 状态码含义
爬虫·python·网络协议·http·https
白熊18811 分钟前
【图像生成大模型】Step-Video-T2V:下一代文本到视频生成技术
人工智能·opencv·yolo·计算机视觉·大模型·音视频
立秋678914 分钟前
从零开始:使用 PyTorch 构建深度学习网络
人工智能·pytorch·深度学习
知舟不叙31 分钟前
基于OpenCV的实时文档扫描与矫正技术
人工智能·opencv·计算机视觉·透视变换·实时文档扫描与矫正
Blossom.1181 小时前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
说私域1 小时前
O2O电商变现:线上线下相互导流——基于定制开发开源AI智能名片S2B2C商城小程序的研究
人工智能·小程序·开源·零售
xiaohanbao091 小时前
day29 python深入探索类装饰器
开发语言·python·学习·机器学习·pandas
Jamence2 小时前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理
与火星的孩子对话2 小时前
Unity3D开发AI桌面精灵/宠物系列 【六】 人物模型 语音口型同步 LipSync 、梅尔频谱MFCC技术、支持中英文自定义编辑- 基于 C# 语言开发
人工智能·unity·c#·游戏引擎·宠物·lipsync
CryptoRzz2 小时前
股票数据源对接技术指南:印度尼西亚、印度、韩国
数据库·python·金融·数据分析·区块链