多维时序 | MATLAB实现GWO-GRU灰狼算法优化门控循环单元的多变量时间序列预测

多维时序 | MATLAB实现GWO-GRU灰狼算法优化门控循环单元的多变量时间序列预测

目录

    • [多维时序 | MATLAB实现GWO-GRU灰狼算法优化门控循环单元的多变量时间序列预测](#多维时序 | MATLAB实现GWO-GRU灰狼算法优化门控循环单元的多变量时间序列预测)

预测效果


基本介绍

MATLAB实现基于GWO-GRU灰狼算法优化门控循环单元的多变量时间序列预测(完整程序和数据)

1.输入多个特征,输出单个变量;

2.考虑历史特征的影响,多变量时间序列预测;

4.excel数据,方便替换;

5.运行环境Matlab2018b及以上;

6.输出R2、MAE、MBE等评价指标;

7.优化学习率,隐藏层节点,正则化系数。
注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

程序设计

clike 复制代码
 
        
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心1 个月前
多输入多输出 | Matlab实现TCN-GRU时间卷积神经网络结合门控循环单元多输入多输出预测
门控循环单元·多输入多输出预测·tcn-gru·时间卷积神经网络
机器学习之心2 个月前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
机器学习之心3 个月前
全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)
注意力机制·多变量时间序列预测·tcn-lstm·psa-tcn-lstm
scdifsn3 个月前
动手学深度学习9.1. 门控循环单元(GRU)-笔记&练习(PyTorch)
笔记·深度学习·cnn·gru·门控循环单元
机器学习之心3 个月前
多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测
支持向量机·matlab·贝叶斯优化·多变量时间序列预测·最小二乘支持向量机·bo-lssvm
百里与司空3 个月前
STM32——看门狗通俗解析
stm32·单片机·嵌入式硬件·门控循环单元
机器学习之心3 个月前
多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测
支持向量机·多变量时间序列预测·ssa-svr·麻雀算法优化支持向量机
机器学习之心3 个月前
强推!创新直发核心!时序分解+优化组合+模型对比!VMD-SSA-Transformer-BiLSTM多变量时间序列预测
transformer·bilstm·多变量时间序列预测·vmd-ssa
Francek Chen4 个月前
【机器学习-神经网络】循环神经网络
人工智能·rnn·深度学习·神经网络·机器学习·门控循环单元
机器学习之心4 个月前
时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)
人工智能·pytorch·python·多变量时间序列预测·dlinear·patchtst