SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测

目录

效果一览





基本介绍

1.基于SSA-TCN-LSTM-Attention麻雀搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

程序设计

  • 完整程序私信博主回复Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);

参考资料

1\] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502 \[2\] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502 \[3\] https://hmlhml.blog.csdn.net/article/details/132372151

相关推荐
amhjdx3 小时前
星巽短剧以科技赋能影视创新,构建全球短剧新生态!
人工智能·科技
听风南巷3 小时前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
美林数据Tempodata4 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
电科_银尘4 小时前
【大语言模型】-- 私有化部署
人工智能·语言模型·自然语言处理
翔云 OCR API6 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
南方者6 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
庄周迷蝴蝶6 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran6 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
大千AI助手6 小时前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调
雾江流7 小时前
RikkaHub 1.6.11 | 开源的本地大型语言模型聚合应用,支持多种AI服务提供商
人工智能·语言模型·自然语言处理·软件工程