SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测

目录

效果一览





基本介绍

1.基于SSA-TCN-LSTM-Attention麻雀搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

程序设计

  • 完整程序私信博主回复Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);

参考资料

1\] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502 \[2\] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502 \[3\] https://hmlhml.blog.csdn.net/article/details/132372151

相关推荐
模型启动机6 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***1957 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG7 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7847 小时前
深度学习技术
人工智能·深度学习
KKKlucifer8 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全8 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖8 小时前
这个Q3,百度开始AI
人工智能·百度
Leinwin8 小时前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure
Q***f6358 小时前
机器学习书籍
人工智能·机器学习
小毅&Nora8 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构