SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测

目录

效果一览





基本介绍

1.基于SSA-TCN-LSTM-Attention麻雀搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

程序设计

  • 完整程序私信博主回复Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);

参考资料

1\] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502 \[2\] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502 \[3\] https://hmlhml.blog.csdn.net/article/details/132372151

相关推荐
大千AI助手1 分钟前
学生化残差(Studentized Residual):概念、计算与应用
人工智能·回归分析·正态分布·t分布·残差·学生化残差·异方差性
羊羊小栈2 分钟前
基于「YOLO目标检测 + 多模态AI分析」的光伏板缺陷检测分析系统(vue+flask+模型训练+AI算法)
vue.js·人工智能·yolo·目标检测·flask·毕业设计·大作业
dmy14 分钟前
使用claude code的十五个小技巧
人工智能·程序员·claude
一条数据库32 分钟前
人工智能与数据领域700+职位数据集:支持就业市场分析、NLP训练与推荐系统开发的高质量研究资源
人工智能·自然语言处理
张较瘦_2 小时前
[论文阅读] AI+软件工程(迁移)| 从JDK8到21:FreshBrew如何为AI代码迁移画上“可信句号”
论文阅读·人工智能·软件工程
Mintopia2 小时前
小样本学习在 WebAI 场景中的技术应用与局限
前端·人工智能·aigc
yueyuebaobaoxinx2 小时前
2025 AI 落地元年:从技术突破到行业重构的实践图景
人工智能·重构
说私域2 小时前
私域整体结构的顶层设计:基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的体系重构
人工智能·小程序·开源
yunyun18863583 小时前
AI - 自然语言处理(NLP) - part 1
人工智能·自然语言处理
星期天要睡觉3 小时前
计算机视觉(opencv)——疲劳检测
人工智能·opencv·计算机视觉