多变量时间序列预测

机器学习之心2 个月前
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测1.基于SSA-TCN-LSTM-Attention麻雀搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
机器学习之心3 个月前
注意力机制·多变量时间序列预测·tcn-lstm·psa-tcn-lstm
全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)1.基于PSA-TCN-LSTM-Attention的PID搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
机器学习之心3 个月前
支持向量机·matlab·贝叶斯优化·多变量时间序列预测·最小二乘支持向量机·bo-lssvm
多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测1.Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测(完整源码和数据)
机器学习之心3 个月前
支持向量机·多变量时间序列预测·ssa-svr·麻雀算法优化支持向量机
多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SSA选择最佳的SVM核函数参数c和g; 3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;程序内注释详细,excel数据,直接替换数据就可以用。 4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。 5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰
机器学习之心3 个月前
transformer·bilstm·多变量时间序列预测·vmd-ssa
强推!创新直发核心!时序分解+优化组合+模型对比!VMD-SSA-Transformer-BiLSTM多变量时间序列预测1.强推!创新直发核心!时序分解+优化组合+模型对比!VMD-SSA-Transformer-BiLSTM多变量时间序列预测,变分模态分解+麻雀搜索算法优化Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
机器学习之心4 个月前
人工智能·pytorch·python·多变量时间序列预测·dlinear·patchtst
时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)DLinear+PatchTST多变量时间序列 dlinear,patchtst python代码,pytorch架构 适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列预测。 Patchest是2023年发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果。创新点超级强。 模型精度高. 功能如下: 1.多变量输入,单变量输出/可改多输出 2.多时间步预测,单时间步预测 3.评价指标:R方 RMSE MAE MAPE 对比图 4.数据从excel/csv文
机器学习之心4 个月前
lstm·多变量时间序列预测·vmd-ssa-lssvm
时序预测 | 基于VMD-SSA-LSSVM+LSTM多变量时间序列预测模型(Matlab)旧时回忆,独此一家。基于VMD-SSA-LSSVM+LSTM多变量时间序列预测模型(Matlab)——————组合模型预测结果—————————— 预测绝对平均误差MAE LSTM VMDSSALSSVM 组合模型 701.5382 859.1317 649.0188
机器学习之心5 个月前
matlab·cnn·gru·attention·多变量时间序列预测·ssa-cnn-gru
SCI一区级 | Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测1.【SCI一区级】Matlab实现SSA-CNN-GRU-Multihead-Attention麻雀算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;
机器学习之心5 个月前
matlab·cnn·lstm·attention·多变量时间序列预测·gjo-cnn-lstm
SCI一区级 | Matlab实现GJO-CNN-LSTM-Multihead-Attention多变量时间序列预测1.Matlab实现GJO-CNN-LSTM-Mutilhead-Attention金豺优化算法优化卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;
机器学习之心6 个月前
attention·多变量时间序列预测·tcn-lstm·dbo-tcn-lstm
SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测1.【SCI一区级】Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测(程序可以作为SCI一区级论文代码支撑);
机器学习之心6 个月前
matlab·cnn·transformer·多变量时间序列预测·cnn-transformer
独家原创 | Matlab实现CNN-Transformer多变量时间序列预测1.Matlab实现CNN-Transformer多变量时间序列预测;2.运行环境为Matlab2023b及以上;
机器学习之心7 个月前
attention·多变量时间序列预测·时间卷积长短期记忆神经网络·粒子群算法优化·融合注意力机制·pso-tcn-lstm
SCI一区 | Matlab实现PSO-TCN-LSTM-Attention粒子群算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测1.基于PSO-TCN-LSTM-Attention粒子群算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心8 个月前
attention·多变量时间序列预测·mutilhead·bes-cnn-gru
SCI一区级 | Matlab实现BES-CNN-GRU-Mutilhead-Attention多变量时间序列预测1.Matlab实现BES-CNN-GRU-Mutilhead-Attention秃鹰算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。
机器学习之心8 个月前
多变量时间序列预测·vmd-tcn-lstm·变分模态分解·tcn-lstm-matt·多头注意力
EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测1.Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测;
机器学习之心8 个月前
时间卷积双向门控循环单元·鹈鹕算法优化·注意力机制·多变量时间序列预测·poa-tcn-bigru
SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测1.Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心8 个月前
tcn-bigru·时间卷积双向门控循环单元·多变量时间序列预测·融合注意力机制·鱼鹰算法优化·ooa-tcn-bigru
SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测1.基于OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心9 个月前
时间卷积双向门控循环单元·注意力机制·多变量时间序列预测·bes-tcn-bigru·秃鹰算法优化
SCI一区 | Matlab实现BES-TCN-BiGRU-Attention秃鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测1.Matlab实现BES-TCN-BiGRU-Attention秃鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心9 个月前
attention·时间卷积双向门控循环单元·多变量时间序列预测·粒子群算法优化·pso-tcn-bigru
SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测1.基于PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心9 个月前
attention·tcn-bigru·时间卷积双向门控循环单元·多变量时间序列预测·灰狼算法优化·gwo-tcn-bigru
SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测1.基于GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
机器学习之心9 个月前
attention·tcn-bigru·时间卷积双向门控循环单元·注意力机制·多变量时间序列预测·霜冰算法优化·rime-tcn-bigru
SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测1.基于RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价; 5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。