全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

目录

效果一览





基本介绍

1.基于PSA-TCN-LSTM-Attention的PID搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

一种新的元启发式优化算法--PID搜索算法,PID-based search algorithm (PSA)。该算法基于增量PID算法,通过不断调整系统偏差,使整个种群收敛到最优状态。该成果于2023年12月发表在中科院1区SCI期刊Expert Systems with Applications。

程序设计

  • 完整程序和数据下载私信博主回复全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)。
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测



%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
陈 洪 伟1 天前
Transformer彻底剖析(4):注意力为什么要用多头以及为什么有多层注意力
transformer·注意力机制
盼小辉丶11 天前
PyTorch实战(14)——图注意力网络(Graph Attention Network,GAT)
pytorch·图神经网络·注意力机制·图注意力网络
远瞻。12 天前
【环境部署】安装flash-attention
pip·注意力机制
AndrewHZ13 天前
【图像处理基石】什么是图像处理中的注意力机制?
图像处理·pytorch·深度学习·算法·计算机视觉·注意力机制·通道注意力
一勺汤15 天前
YOLO11 改进、魔改| 空间与通道协同注意力模块SCSA,通过空间与通道注意力的协同作用,提升视觉任务的特征提取能力与泛化性能。
yolo·注意力机制·遮挡·yolo11·yolo11改进·小目标·scsa
安如衫20 天前
【机器学习基础】Attention in Transformers:注意力机制
笔记·深度学习·学习·机器学习·注意力机制
潘帕斯的雄鹰1 个月前
直观理解注意力机制
python·transformer·注意力机制·自注意力机制
机器学习之心1 个月前
BKA-Transformer-LSTM多变量时间序列预测Matlab实现
matlab·lstm·transformer·多变量时间序列预测
Mr.zwX1 个月前
GPT-OSS大模型Attention架构设计
大模型·注意力机制·gpt-oss
提娜米苏1 个月前
注意力机制:Jointly Learning to Align and Translate中从双向RNN编码器到软对齐的完整流程
rnn·注意力机制