全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

目录

效果一览





基本介绍

1.基于PSA-TCN-LSTM-Attention的PID搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

一种新的元启发式优化算法--PID搜索算法,PID-based search algorithm (PSA)。该算法基于增量PID算法,通过不断调整系统偏差,使整个种群收敛到最优状态。该成果于2023年12月发表在中科院1区SCI期刊Expert Systems with Applications。

程序设计

  • 完整程序和数据下载私信博主回复全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)。
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测



%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
Francek Chen3 天前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
Francek Chen5 天前
【现代深度学习技术】注意力机制04:Bahdanau注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
flying_13149 天前
面试常问系列(一)-神经网络参数初始化-之自注意力机制为什么除以根号d而不是2*根号d或者3*根号d
人工智能·深度学习·神经网络·transformer·注意力机制
墨顿17 天前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
Light6017 天前
计算机视觉进化论:YOLOv12、YOLOv11与Darknet系YOLOv7的微调实战对比
人工智能·yolo·计算机视觉·模型压缩·注意力机制·微调策略·实时检测
微学AI20 天前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
简简单单做算法22 天前
基于GA遗传优化TCN-BiGRU注意力机制网络模型的时间序列预测算法matlab仿真
matlab·tcn-bigru·时间序列预测·注意力机制·ga遗传优化
終不似少年遊*1 个月前
【NLP解析】多头注意力+掩码机制+位置编码:Transformer三大核心技术详解
人工智能·自然语言处理·大模型·nlp·transformer·注意力机制
机器学习之心1 个月前
TCN-LSTM时间卷积长短期记忆神经网络多变量时间序列预测(Matlab完整源码和数据)
神经网络·matlab·lstm·多变量时间序列预测·tcn-lstm·时间卷积长短期记忆神经网络
机器学习之心1 个月前
Transformer+BO-SVM多变量时间序列预测(Matlab)
支持向量机·matlab·transformer·贝叶斯优化·多变量时间序列预测