B - Polycarp‘s Practice

Polycarp is practicing his problem solving skill. He has a list of nn problems with difficulties a_1, a_2, \dots, a_na1​,a2​,...,an​, respectively. His plan is to practice for exactly kk days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all nn problems in exactly kk days.

Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in kk days he will solve all the nn problems.

The profit of the jj-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the jj-th day (i.e. if he solves problems with indices from ll to rr during a day, then the profit of the day is \max\limits_{l \le i \le r}a_il≤i≤rmax​ai​). The total profit of his practice is the sum of the profits over all kk days of his practice.

You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all nn problems between kk days satisfying the conditions above in such a way, that the total profit is maximum.

For example, if n = 8, k = 3n=8,k=3 and a = [5, 4, 2, 6, 5, 1, 9, 2]a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5, 4, 2], [6, 5], [1, 9, 2][5,4,2],[6,5],[1,9,2]. Here the total profit equals 5 + 6 + 9 = 205+6+9=20.

Input

The first line of the input contains two integers nn and kk (1 \le k \le n \le 20001≤k≤n≤2000) --- the number of problems and the number of days, respectively.

The second line of the input contains nn integers a_1, a_2, \dots, a_na1​,a2​,...,an​ (1 \le a_i \le 20001≤ai​≤2000) --- difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).

Output

In the first line of the output print the maximum possible total profit.

In the second line print exactly kk positive integers t_1, t_2, \dots, t_kt1​,t2​,...,tk​ (t_1 + t_2 + \dots + t_kt1​+t2​+⋯+tk​ must equal nn), where t_jtj​ means the number of problems Polycarp will solve during the jj-th day in order to achieve the maximum possible total profit of his practice.

If there are many possible answers, you may print any of them.

Sample 1

Inputcopy Outputcopy
8 3 5 4 2 6 5 1 9 2 20 3 2 3

Sample 2

Inputcopy Outputcopy
5 1 1 1 1 1 1 1 5

Sample 3

Inputcopy Outputcopy
4 2 1 2000 2000 2 4000 2 2

Note

The first example is described in the problem statement.

In the second example there is only one possible distribution.

In the third example the best answer is to distribute problems in the following way: [1, 2000], [2000, 2][1,2000],[2000,2]. The total profit of this distribution is 2000 + 2000 = 40002000+2000=4000.

题目翻译

给定长度为n的序列,要求分成k段,最大化每段最大值的和

复制代码
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<string.h>
#include<climits>
#include<map>
#include<algorithm>
typedef long long ll;
using namespace std;
const int N = 2010;
int n, k;

struct node {
	int num, val;
}mm[N];

bool cmp1(node n1, node n2)
{
	return n1.val > n2.val;
}

bool cmp2(node n1, node n2)
{
	return n1.num < n2.num;
}

int main()
{
	cin >> n >> k;
	for (int i = 1; i <= n; i++)
	{
		int num;cin >> num;
		mm[i].num = i;
		mm[i].val = num;
	}

	sort(mm + 1, mm + n + 1, cmp1);//先对整个序列按照数值的大小进行排序,去前k个数的和

	int sum = 0;
	for (int i = 1; i <= k; i++) sum += mm[i].val;

	sort(mm + 1, mm + k + 1, cmp2); //在对前k个数进行排序,做差分组

	cout << sum << endl;

	for (int i = 1; i < k; i++) cout << mm[i].num - mm[i - 1]. num << " ";
	cout << n - mm[k - 1].num << endl;

	return 0;
}
相关推荐
uhakadotcom15 分钟前
OpenAI 的 PaperBench:AI 研究复现基准测试工具
算法·面试·github
凯强同学20 分钟前
第十四届蓝桥杯大赛软件赛省赛Python 大学 C 组:6.棋盘
python·算法·蓝桥杯
我的大老婆21 分钟前
【Python】Python 环境 + Pycharm 编译器 官网免费下载安装(图文教程,新手安装,Windows 10 系统)
开发语言·windows·经验分享·python·青少年编程·pycharm
wuqingshun3141591 小时前
蓝桥杯 切割
数据结构·c++·算法·职场和发展·蓝桥杯
艾妮艾妮1 小时前
C语言常见3种排序
java·c语言·开发语言·c++·算法·c#·排序算法
百度Geek说1 小时前
前沿多模态模型开发与应用实战3:DeepSeek-VL2多模态理解大模型算法解析与功能抢先体验
算法
小王努力学编程1 小时前
动态规划学习——回文子串系列问题【C++】
c++·学习·算法·leetcode·动态规划
ZTLJQ1 小时前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
JohnFF2 小时前
48. 旋转图像
数据结构·算法·leetcode
bbc1212262 小时前
AT_abc306_b [ABC306B] Base 2
算法