B - Polycarp‘s Practice

Polycarp is practicing his problem solving skill. He has a list of nn problems with difficulties a_1, a_2, \dots, a_na1​,a2​,...,an​, respectively. His plan is to practice for exactly kk days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all nn problems in exactly kk days.

Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in kk days he will solve all the nn problems.

The profit of the jj-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the jj-th day (i.e. if he solves problems with indices from ll to rr during a day, then the profit of the day is \max\limits_{l \le i \le r}a_il≤i≤rmax​ai​). The total profit of his practice is the sum of the profits over all kk days of his practice.

You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all nn problems between kk days satisfying the conditions above in such a way, that the total profit is maximum.

For example, if n = 8, k = 3n=8,k=3 and a = [5, 4, 2, 6, 5, 1, 9, 2]a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5, 4, 2], [6, 5], [1, 9, 2][5,4,2],[6,5],[1,9,2]. Here the total profit equals 5 + 6 + 9 = 205+6+9=20.

Input

The first line of the input contains two integers nn and kk (1 \le k \le n \le 20001≤k≤n≤2000) --- the number of problems and the number of days, respectively.

The second line of the input contains nn integers a_1, a_2, \dots, a_na1​,a2​,...,an​ (1 \le a_i \le 20001≤ai​≤2000) --- difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).

Output

In the first line of the output print the maximum possible total profit.

In the second line print exactly kk positive integers t_1, t_2, \dots, t_kt1​,t2​,...,tk​ (t_1 + t_2 + \dots + t_kt1​+t2​+⋯+tk​ must equal nn), where t_jtj​ means the number of problems Polycarp will solve during the jj-th day in order to achieve the maximum possible total profit of his practice.

If there are many possible answers, you may print any of them.

Sample 1

Inputcopy Outputcopy
8 3 5 4 2 6 5 1 9 2 20 3 2 3

Sample 2

Inputcopy Outputcopy
5 1 1 1 1 1 1 1 5

Sample 3

Inputcopy Outputcopy
4 2 1 2000 2000 2 4000 2 2

Note

The first example is described in the problem statement.

In the second example there is only one possible distribution.

In the third example the best answer is to distribute problems in the following way: [1, 2000], [2000, 2][1,2000],[2000,2]. The total profit of this distribution is 2000 + 2000 = 40002000+2000=4000.

题目翻译

给定长度为n的序列,要求分成k段,最大化每段最大值的和

复制代码
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<string.h>
#include<climits>
#include<map>
#include<algorithm>
typedef long long ll;
using namespace std;
const int N = 2010;
int n, k;

struct node {
	int num, val;
}mm[N];

bool cmp1(node n1, node n2)
{
	return n1.val > n2.val;
}

bool cmp2(node n1, node n2)
{
	return n1.num < n2.num;
}

int main()
{
	cin >> n >> k;
	for (int i = 1; i <= n; i++)
	{
		int num;cin >> num;
		mm[i].num = i;
		mm[i].val = num;
	}

	sort(mm + 1, mm + n + 1, cmp1);//先对整个序列按照数值的大小进行排序,去前k个数的和

	int sum = 0;
	for (int i = 1; i <= k; i++) sum += mm[i].val;

	sort(mm + 1, mm + k + 1, cmp2); //在对前k个数进行排序,做差分组

	cout << sum << endl;

	for (int i = 1; i < k; i++) cout << mm[i].num - mm[i - 1]. num << " ";
	cout << n - mm[k - 1].num << endl;

	return 0;
}
相关推荐
停停的茶1 小时前
决策树(2)
算法·决策树·机器学习
汤永红1 小时前
week2-[一维数组]最大元素
数据结构·c++·算法·信睡奥赛
菜鸟555554 小时前
图论:Floyd算法
算法·图论
呼啦啦啦啦啦啦啦啦9 小时前
常见的排序算法
java·算法·排序算法
胡萝卜3.010 小时前
数据结构初阶:排序算法(一)插入排序、选择排序
数据结构·笔记·学习·算法·排序算法·学习方法
地平线开发者10 小时前
LLM 中 token 简介与 bert 实操解读
算法·自动驾驶
scx2013100410 小时前
20250814 最小生成树和重构树总结
c++·算法·最小生成树·重构树
阿巴~阿巴~11 小时前
冒泡排序算法
c语言·开发语言·算法·排序算法
散11211 小时前
01数据结构-交换排序
数据结构·算法
yzx99101311 小时前
Yolov模型的演变
人工智能·算法·yolo