https://github.com/MLEveryday/100-Days-Of-ML-Code/blob/master/README.md
逻辑回归
逻辑回归用来处理不同的分类问题,这里的目的是预测当前被观察的对象属于哪个组。会给你提供一个离散的二进制输出结果,一个简单例子:判断一个人是否会在选举中投票。
how to work
逻辑回归使用基础逻辑函数 通过估算概率来测量因变量和自变量间的关系。
做出预测
这些概率值必修转换成二进制数,以便实际中进行预测。这是逻辑函数sigmoid的任务,然后使用阈值分类器将(0,1)范围的值转换为0和1的值来表示结果。
区别
逻辑回归给出离散的输出
线性回归给出连续的输出
sigmoid函数
一个S型曲线,可以实现将任意真实值映射为值域范围为0-1的值
θ ( s ) = \theta(s)= θ(s)= 1 1 + e − s {1\over 1+e^{-s}} 1+e−s1
极大似然估计--Maximum Likelihood Estimation
利用已知样本结果,反推最有可能导致这样结果的参数值。
用于估计参数,使得观测数据在给定模型下的概率最大化。
极大似然估计的核心思想是,选择使观测数据出现的概率最大的参数值,因为这些参数值使数据出现的可能性最高。
基本原理
- 定义模型:首先,需要定义一个概率模型,通常用参数化的概率分布表示。这个模型包括一个参数向量(或参数集),需要估计。
- 建立似然函数:似然函数是关于模型参数的函数,它描述了给定参数值时观测数据的可能性。似然函数通常用 L ( θ ∣ x ) L(θ|x) L(θ∣x), θ θ θ是要估计的参数, x x x是观测数据。
- 最大化似然函数:通过找到使似然函数最大化的参数 θ θ θ,来进行估计。这通常可以通过计算似然函数的梯度,并使用数值优化方法(如梯度下降或牛顿法)来实现。
- 估计结果:得到最大似然估计就可以用它来代表参数的估计值。通常,估计的参数值具有使观测数据出现的可能性最大化的性质。
特征缩放
StandardScaler通过以下方式进行特征缩放:
计算每个特征的均值(mean)和标准差(standard deviation)。
对每个特征进行标准化,使其具有均值为0和标准差为1的分布。具体计算方式是将每个特征的值减去均值,然后除以标准差。
python
###1
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values ## 选取2,3两列--Age+ salary
y = dataset.iloc[:, 4].values ## 选取最后一列
#from sklearn.cross_validation import train_test_split#old
from sklearn.model_selection import train_test_split, cross_val_score#new
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# 特征缩放是数据预处理的一个重要步骤,它有助于确保不同特征之间的尺度一致,避免某些特征对模型训练产生过大的影响。
from sklearn.preprocessing import StandardScaler ##特征缩放
sc = StandardScaler()# 使用了StandardScaler类来标准化特征
X_train = sc.fit_transform(X_train)
# 在训练集上计算均值和标准差,并进行特征缩放
X_test = sc.transform(X_test)
# 在测试集上使用相同的均值和标准差进行特征缩放
python
### 2
from sklearn.linear_model import LogisticRegression
# 使用了scikit-learn(sklearn)库中的逻辑回归(Logistic Regression)模型,
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
# X_train 是训练集的特征数据,y_train 是对应的训练集目标(标签)。
# 通过拟合(fitting)逻辑回归模型,模型会学习如何根据输入特征来预测目标变量 y。
python
### 3
y_pred = classifier.predict(X_test)# 使用训练好的模型进行预测
# predict 方法接受测试数据作为输入,然后返回模型根据输入数据的特征所做的预测。
python
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# 对预测结果进行评估
# 使用了 confusion_matrix 函数来计算混淆矩阵,以便对分类模型的性能进行评估。
# 混淆矩阵是评估分类模型的一个重要工具,它显示了模型的预测结果与实际标签之间的关系
具体来说,混淆矩阵包含以下四个关键指标:
真正例(True Positives,TP):模型正确预测为正类别的样本数量。
假正例(False Positives,FP):模型错误预测为正类别的样本数量。
真负例(True Negatives,TN):模型正确预测为负类别的样本数量。
假负例(False Negatives,FN):模型错误预测为负类别的样本数量。
通过这些指标,您可以计算各种性能指标,如准确率、召回率、精确度和F1分数
python
# 计算准确率
accuracy = (TP + TN) / (TP + TN + FP + FN)
# 计算召回率
recall = TP / (TP + FN)
# 计算精确度
precision = TP / (TP + FP)
# 计算F1分数
f1_score = 2 * (precision * recall) / (precision + recall)
python
# 绘制分类器的决策边界和数据点的可视化
# 使用了matplotlib库来创建决策区域图,并将测试集的样本点可视化
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=cmap(idx),marker=markers[idx], label=cl)
# highlight test samples
if test_idx:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0], X_test[:, 1], c='', alpha=1.0, linewidth=1, marker='o', s=55, label='test set')
plot_decision_regions(X_test, y_pred, classifier=classifier)
plt.xlabel('age')
plt.ylabel('salary')
plt.legend(loc='upper left')
plt.title("Test set")
plt.show()