深度学习概念(术语):Fine-tuning、Knowledge Distillation, etc

文章目录

  • 1.Fine-tuning (微调)
  • [2.Transfer Learning (迁移学习)](#2.Transfer Learning (迁移学习))
  • [3.Knowledge Distillation (知识蒸馏)](#3.Knowledge Distillation (知识蒸馏))
  • [4.Meta Learning (元学习)](#4.Meta Learning (元学习))

这里的相关概念都是基于已有预训练模型,就是模型本身已经训练好,有一定泛化能力。需要"再加工"满足别的任务需求。

进入后GPT时代,对模型的Fine-tuning也将成为趋势,借此机会,我来科普下相关概念。

1.Fine-tuning (微调)

有些人认为微调和训练没有区别,都是训练模型,但是微调是在原模型训练好的的基础上,做针对性的再训练。微调一般用额外的数据集,降低学习率让模型适应特定任务。

2.Transfer Learning (迁移学习)

迁移学习大意是让模型适应新的任务,这涉及模型的改进和再训练。可以把微调看作是迁移学习的一种。

相比微调,迁移学习很多时候并不需要训练原有模型,可以只训练一部分,或者给模型加1-2层后,用元模型的输出作为迁移学习的输入,训练额外添加部分即可。

3.Knowledge Distillation (知识蒸馏)

KD目标是用一个小模型去学习大模型的能力,在保证基线性能的前提下,降低模型的参数和复杂度。

4.Meta Learning (元学习)

Learning to Learning,就是学会学习,这个概念并不需要预训练模型。元学习是指模型学习各类任务数据,然后学会各类任务的共性,从而适应新的任务。

相关推荐
rosmis3 分钟前
地铁轨道病害检测系统-软件开发日志-2-02
人工智能
天云数据9 分钟前
<span class=“js_title_inner“>“AI+” 实效落地指南|天云数据四大场景攻坚方案,为能源/消防/交通/康养精准赋能</span>
人工智能·能源
方见华Richard15 分钟前
递归对抗引擎RAE:AGI终极希望与内生安全范式革新,自指认知AI为碳硅共生必然主体
人工智能·交互·学习方法·原型模式·空间计算
OenAuth.Core22 分钟前
2026年AI甘特图工具深度对比:帮你选择最合适的甘特图软件
人工智能·甘特图
2501_9418372644 分钟前
多颜色玫瑰品种识别与分类_YOLO13-C3k2-PoolingFormer模型详解_1
人工智能·数据挖掘
新缸中之脑1 小时前
为什么我选 Codex
人工智能
yumgpkpm1 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
witAI1 小时前
**AI漫剧制作工具2025推荐,零成本实现专业级动画创作*
人工智能·python
冬奇Lab1 小时前
一天一个开源项目(第12篇):SoulX-Podcast - 多轮对话式播客生成,让AI语音更自然真实
人工智能·开源
风栖柳白杨1 小时前
【语音识别】一些音频的使用方法
人工智能·音视频·语音识别