深度学习概念(术语):Fine-tuning、Knowledge Distillation, etc

文章目录

  • 1.Fine-tuning (微调)
  • [2.Transfer Learning (迁移学习)](#2.Transfer Learning (迁移学习))
  • [3.Knowledge Distillation (知识蒸馏)](#3.Knowledge Distillation (知识蒸馏))
  • [4.Meta Learning (元学习)](#4.Meta Learning (元学习))

这里的相关概念都是基于已有预训练模型,就是模型本身已经训练好,有一定泛化能力。需要"再加工"满足别的任务需求。

进入后GPT时代,对模型的Fine-tuning也将成为趋势,借此机会,我来科普下相关概念。

1.Fine-tuning (微调)

有些人认为微调和训练没有区别,都是训练模型,但是微调是在原模型训练好的的基础上,做针对性的再训练。微调一般用额外的数据集,降低学习率让模型适应特定任务。

2.Transfer Learning (迁移学习)

迁移学习大意是让模型适应新的任务,这涉及模型的改进和再训练。可以把微调看作是迁移学习的一种。

相比微调,迁移学习很多时候并不需要训练原有模型,可以只训练一部分,或者给模型加1-2层后,用元模型的输出作为迁移学习的输入,训练额外添加部分即可。

3.Knowledge Distillation (知识蒸馏)

KD目标是用一个小模型去学习大模型的能力,在保证基线性能的前提下,降低模型的参数和复杂度。

4.Meta Learning (元学习)

Learning to Learning,就是学会学习,这个概念并不需要预训练模型。元学习是指模型学习各类任务数据,然后学会各类任务的共性,从而适应新的任务。

相关推荐
AI蜗牛之家2 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上2 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧2 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM3 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑4 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq5 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖5 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV5 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer5 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor6 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc