深度学习概念(术语):Fine-tuning、Knowledge Distillation, etc

文章目录

  • 1.Fine-tuning (微调)
  • [2.Transfer Learning (迁移学习)](#2.Transfer Learning (迁移学习))
  • [3.Knowledge Distillation (知识蒸馏)](#3.Knowledge Distillation (知识蒸馏))
  • [4.Meta Learning (元学习)](#4.Meta Learning (元学习))

这里的相关概念都是基于已有预训练模型,就是模型本身已经训练好,有一定泛化能力。需要"再加工"满足别的任务需求。

进入后GPT时代,对模型的Fine-tuning也将成为趋势,借此机会,我来科普下相关概念。

1.Fine-tuning (微调)

有些人认为微调和训练没有区别,都是训练模型,但是微调是在原模型训练好的的基础上,做针对性的再训练。微调一般用额外的数据集,降低学习率让模型适应特定任务。

2.Transfer Learning (迁移学习)

迁移学习大意是让模型适应新的任务,这涉及模型的改进和再训练。可以把微调看作是迁移学习的一种。

相比微调,迁移学习很多时候并不需要训练原有模型,可以只训练一部分,或者给模型加1-2层后,用元模型的输出作为迁移学习的输入,训练额外添加部分即可。

3.Knowledge Distillation (知识蒸馏)

KD目标是用一个小模型去学习大模型的能力,在保证基线性能的前提下,降低模型的参数和复杂度。

4.Meta Learning (元学习)

Learning to Learning,就是学会学习,这个概念并不需要预训练模型。元学习是指模型学习各类任务数据,然后学会各类任务的共性,从而适应新的任务。

相关推荐
喵~来学编程啦23 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司36 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng2 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富3 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle