使用 multiprocessing 多进程处理批量数据

示例代码

python 复制代码
import multiprocessing

def process_data(data):
    # 这里是处理单个数据的过程
    return data * 2

# 待处理的数据
data = [1, 2, 3, 4, 5]

def normal_func():
    # 普通处理方式
    result = []
    for obj in data:
        result.append(process_data(obj)

    return result

def parallel_func():
    # 多进程处理方式
    pool = multiprocessing.Pool(multiprocessing.cpu_count())
    result = pool.map(process_data, data)
    pool.close()
    return result

if __name__ == '__main__':
    result = normal_func()
    result = parallel_func()
    

multiprocessing.Pool 创建进程池, 传入的参数是要要使用的 CPU 内核数量, 直接用 cpu_count() 可以拿到当前硬件配置所有的 CPU 内核数.

pool.map 可以直接将处理后的结果拼接成一个 list 对象

应用在实际数据处理代码的效果对比:

  • 普通处理方式, 用时 221 秒
  • 多进程处理方式, 用时 39 秒, 节省了 82% 的时间
相关推荐
加油吧zkf2 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
t_hj3 分钟前
python规划
python
czhc114007566318 分钟前
Linux 76 rsync
linux·运维·python
悠悠小茉莉1 小时前
Win11 安装 Visual Studio(保姆教程 - 更新至2025.07)
c++·ide·vscode·python·visualstudio·visual studio
m0_625686551 小时前
day53
python
Real_man2 小时前
告别 requirements.txt,拥抱 pyproject.toml和uv的现代Python工作流
python
站大爷IP2 小时前
Python文件操作的"保险箱":with语句深度实战指南
python
运器1232 小时前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
巴里巴气5 小时前
selenium基础知识 和 模拟登录selenium版本
爬虫·python·selenium·爬虫模拟登录
19895 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm