使用 multiprocessing 多进程处理批量数据

示例代码

python 复制代码
import multiprocessing

def process_data(data):
    # 这里是处理单个数据的过程
    return data * 2

# 待处理的数据
data = [1, 2, 3, 4, 5]

def normal_func():
    # 普通处理方式
    result = []
    for obj in data:
        result.append(process_data(obj)

    return result

def parallel_func():
    # 多进程处理方式
    pool = multiprocessing.Pool(multiprocessing.cpu_count())
    result = pool.map(process_data, data)
    pool.close()
    return result

if __name__ == '__main__':
    result = normal_func()
    result = parallel_func()
    

multiprocessing.Pool 创建进程池, 传入的参数是要要使用的 CPU 内核数量, 直接用 cpu_count() 可以拿到当前硬件配置所有的 CPU 内核数.

pool.map 可以直接将处理后的结果拼接成一个 list 对象

应用在实际数据处理代码的效果对比:

  • 普通处理方式, 用时 221 秒
  • 多进程处理方式, 用时 39 秒, 节省了 82% 的时间
相关推荐
Ulyanov7 小时前
高保真单脉冲雷达导引头回波生成:Python建模与实践
开发语言·python·仿真·系统设计·单脉冲雷达
Li emily7 小时前
成功接入A股实时行情API获取实时市场数据
人工智能·python·金融·fastapi
shehuiyuelaiyuehao9 小时前
22Java对象的比较
java·python·算法
张小凡vip9 小时前
Python异步编程实战:基于async/await的高并发实现
开发语言·python
zcbk01689 小时前
不踩坑!手把手教你在 Mac 上安装 Windows(含分区/虚拟机/驱动解决方案)
python
Dev7z10 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
吴秋霖10 小时前
apple游客下单逆向分析
python·算法·逆向分析
feasibility.11 小时前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016
L念安dd12 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python
Liue6123123112 小时前
YOLO11改进策略卷积篇使用C3k2-PPA替换YOLO11中的卷积即插即用简单高效
python