[学习笔记]词向量模型-Word2vec

参考资料:
【word2vec词向量模型】原理详解+代码实现
NLP自然语言处理的经典模型Word2vec

论文背景知识

词的表示方法

One-hot Representation:独热表示

简单,但词越多,向量越长。且无法表示词与词之间的关系。

论文储备知识-pre-knowledge

语言模型的概念

语言模型是计算一个句子是句子的概率的模型。(语法和语义上)

语言模型的发展

基于专家语法规则的语言模型

语言学家企图总结出一套通用的语法规则,比如形容词后面接名词等。

统计语言模型



有些词可能没出现在语料中,或者短语太长了。所以概率为0。为了解决这个问题,下面提出统计语言模型中的平滑操作

统计语言模型中的平滑操作

但这只解决了词的概率。

为了解决参数空间过大的问题,引入马尔可夫假设。

语言模型的评价指标

每个领域都有自己的评价指标。

语言模型可以看成是多分类问题

开n次方根是为了避免长句子的概率比小句子概率小,导致评价偏颇

对比模型

NNLM

语言模型是无监督的,不需要标注语料。

输入层

能不写成循环,写成矩阵就写成矩阵。能降低复杂度。

隐藏层

输出层

Loss

batchsize是一种tradeoff

由于句子长度不一,所以要补pad,但是最后要去掉

RNNLM


word2vec

多分类下的逻辑回归模型也是Log线性模型。

下面的skip-gram和cbow也都是Log线性模型。

word2vec的原理

skip-gram



cbow

词袋模型,忽略词的顺序。


关键技术

需要降低softmax的复杂度。

层次softmax

将softmax计算转化为求sigmoid的计算

写成二叉树的结构


skip-gram中的层次softmax


cbow中的层次softmax

与skip-gram的层次softmax的区别是u0是上下文词向量avg

skip-gram只有一组完整的中心词向量,没法像之前一样将中心词向量和周围词向量相加求平均

cbow只有一组完整的周围词向量

负采样

思想:将多分类转化为二分类问题。

负采样效果比层次softmax要好。

一般采样3-10个负样本

skip-gram负采样


重要的词往往出现的频率比较小,不重要的词往往出现的频率比较高

CBOW负采样

重采样



模型复杂度

不同模型的E和T认为一样,所以下面用Q来代表模型复杂度。

NNLM

用层次softmax,V*H会变成 l o g 2 V ∗ H log_2V*H log2V∗H

RNNLM

Skip-gram

skip-gram负采样

CBOW

比较

相关推荐
Jackilina_Stone2 小时前
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
论文阅读·人工智能·笔记·python·算法·计算机视觉
Miqiuha3 小时前
建造者设计模式学习
学习·设计模式
mit6.8243 小时前
[Qt] Qt介绍 | 搭建SDK
linux·c++·qt·学习
宇寒风暖3 小时前
软件工程期末复习(一)
笔记·学习·软件工程
sensen_kiss3 小时前
CPT203 Software Engineering 软件工程 Pt.6 软件管理(中英双语)
学习·软件工程
多恩Stone3 小时前
【Domain Generalization(1)】增量学习/在线学习/持续学习/迁移学习/多任务学习/元学习/领域适应/领域泛化概念理解
人工智能·学习·迁移学习
hao_wujing4 小时前
GPU 进阶笔记(四):NVIDIA GH200 芯片、服务器及集群组网
运维·服务器·笔记
1101 11015 小时前
STM32-笔记23-超声波传感器HC-SR04
笔记·stm32·嵌入式硬件
IT古董5 小时前
【机器学习】机器学习的基本分类-自监督学习-对比学习(Contrastive Learning)
人工智能·学习·机器学习·分类
2401_879103686 小时前
24.12.31 SpringBootDay02
笔记