OpenCV 01(图像加载与显示)

一、机器视觉

现在说的机器视觉(Machine Vision)一般指计算机视觉(Computer Vision), 简单来说就是研究如何使机器看懂东西。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

1.1 机器视觉的应用

人脸识别, 车辆检测,识别图像中的文字(OCR),图像拼接, 修复, 背景替换

二、OpenCV

Gray Bradsky于1999年开发, 2000年发布

C++, Python, Java, JS

跨平台(Windows, Linux, Mac...)

学习opencv可以:

  • 了解OpenCV的运行机制
  • 可以使用OpenCV处理一些图像常见问题
  • 学会物体识别, 文字识别等问题的处理思路

2.1 安装OpenCV

使用服务器虚拟环境安装:

pip install opencv-python==4.7.0.72

安装opencv扩展包(选装):

pip install opencv-contrib-python==4.7.0.72

如果装不了去:https://www.lfd.uci.edu/\~gohlke/pythonlibs/下载相应的包手动安装.

三、OpenCV读取与显示

3.1 创建窗口

复制代码
namedWindow() 创建命名窗口

# WINDOW_AUTOSIZE 窗口大小不允许修改
cv2.namedWindow('new', cv2.WINDOW_AUTOSIZE) 

# WINDOW_NORMAL可以让窗口大小变得可以调节
# cv2.namedWindow('new', cv2.WINDOW_NORMAL)

# 修改窗口大小
# cv2.resizeWindow('new', 1920, 1080)

imshow('new', 显示内容) 显示窗口
复制代码
# 销毁图像窗口 cv2.destroyAllWindows()


# waitKey方法表示等待按键, 0表示任何按键, 其他整数表示等待按键的时间,单位是毫秒, 超过时间没有发生按键操作窗口会自动关闭.
waitKey() 等待用户输入



# 会返回按键的ascii的值
# key = cv2.waitKey(0)
if key == ord('q'):
cv2.destroyAllWindows()

ord()获取ascii值

3.2 图片读写

复制代码
使用imread可以读取图片, 默认读取的是彩色图片.
imread(path, flag)
imwrite(path, img): 使用imwrite保存图片
python 复制代码
cv2.imread('01_Picture/01_cat.jpg')
cv2.imshow('cat',img)
cv2.waitKey(0)

使用matplotlib显示`plt.imshow(img)`

python 复制代码
import matplotlib.pyplot as plt


img= cv2.imread('D:\\3-project\\zyj\\pythonCNN\\pic\\cat.jpeg')
plt.imshow(img)
plt.show()

因为OpenCV读取的图片颜色通道是按照BGR(蓝绿红)排列的, 一般图片通道都是按照RGB来排列的.为了正常的显示猫的图片, 我们要用OpenCV的图像显示方法:

3.3 视频播放和录制

视频是由图片组成的, 视频的每一帧就是一幅图片, 一般是30帧, 表示一秒显示30张图片

cv2.VideoCapture可以捕获摄像头, 用数字来表示不同的设备, 比如0, 1

vc = cv2.VideoCapture('./1.mp4') # 打开视频文件

vc = cv2.VideoCapture(0) # 打开摄像头

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np

cv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)

vc = cv2.VideoCapture(0) #打开摄像头

while True:
    # vc.read() 返回两个值, 第一个为状态值, 读到帧为True, 第二个值为视频帧
    ret, frame = vc.read()
    if not ret:
        break

    cv2.imshow('video',frame)  # 将视频帧放在窗口中显示
    key= cv2.waitKey(10)
    if key & 0xFF == ord('q'):
        break
 # 释放
vc.release()
cv2.destroyAllWindows()

录制视频

python 复制代码
cap = cv2.VideoCapture(0)
# *mp4v就是解包操作 等同于  'm', 'p', '4', 'v'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# (640, 480)表示摄像头拍视频, 这个大小搞错了也不行.
# 主要是这个分辨率.
vw = cv2.VideoWriter('output.mp4', fourcc, 20, (640, 480))

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        print('can not recive frame, Exiting...')
        break
        
    vw.write(frame)
    cv2.imshow('frame', frame)
    
    if cv2.waitKey(1) == ord('q'):
        break
        
cap.release()

#释放VideoWriter
vw.release()

cv2.destroyAllWindows()
  • VideoWriter : 参数一为输出文件, 参数二为多媒体文件格式(VideoWriter_fourcc, 参数三为帧率, 参数四为分辨率.

  • write 编码并写入缓存

  • release 缓存内容写入磁盘, 并释放资源

3.4 控制鼠标

OpenCV允许我们对窗口上的鼠标动作做出响应.

setMouseCallback(winname, callback, userdata) winname是窗口的名字, callback是回调函数, userdata是给回调函数的参数.

callback(event, x, y, flags, userdata)回调函数必须包含这5个参数. event是事件(鼠标移动, 左键, 右键等), x,y是点鼠标的坐标点, flags主要用于组合键, userdata就是上面的setMouseCallback的userdata

鼠标事件:

  • EVENT_MOUSEMOVE 0 鼠标移动

  • EVENT_LBUTTONDOWN 1 按下鼠标左键

  • EVENT_RBUTTONDOWN 2 按下鼠标右键

  • EVENT_MBUTTONDOWN 3 按下鼠标中键

  • EVENT_LBUTTONUP 4 左键释放

  • EVENT_RBUTTONUP 5 右键释放

  • EVENT_MBUTTONUP 6 中键释放

  • EVENT_LBUTTONDBLCLK 7 左键双击

  • EVENT_RBUTTONDBLCLK 8 右键双击

  • EVENT_MBUTTONDBLCLK 9 中键双击

  • EVENT_MOUSEWHEEL 10 鼠标滚轮上下滚动

  • EVENT_MOUSEHWHEEL 11 鼠标左右滚动

flags:

  • EVENT_FLAG_LBUTTON 1 按下左键

  • EVENT_FLAG_RBUTTON 2 按下右键

  • EVENT_FLAG_MBUTTON 4 按下中键

  • EVENT_FLAG_CRTLKEY 8 按下ctrl键

  • EVENT_FLAG_SHIFTKEY 16 按下shift键

  • EVENT_FLAG_ALTKEY 32 按下alt键

python 复制代码
import cv2
import numpy as np


def mouse_callback(event, x, y, flags, userdata):
    print(event, x, y, flags, userdata)
    
cv2.namedWindow('mouse', cv2.WINDOW_NORMAL)
cv2.resizeWindow('mouse', 640, 360)

# 设置鼠标回调函数
cv2.setMouseCallback('mouse', mouse_callback, '123')

# 显示窗口和背景
# 生成全黑的图片
img = np.zeros((360, 640, 3), np.uint8)
while True:
    cv2.imshow('mouse', img)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
        
cv2.destroyAllWindows()

3.5 TrackBar控件

  • createTrackbar(trackbarname, winname, value, count, onChange) 创建TrackBar控件, value为trackbar的默认值, count为bar的最大值, 最小为0

  • getTrackbarPos(trackbarname, winname) 获取TrackBar当前值

python 复制代码
import cv2
import numpy as np

# 创建窗口
cv2.namedWindow('trackbar', cv2.WINDOW_NORMAL)
cv2.resizeWindow('mouse', 640, 480)
# 定义回调函数
def callback(value):
    print(value)

# 创建trackbar
cv2.createTrackbar('R', 'trackbar', 0, 255, callback)
cv2.createTrackbar('G', 'trackbar', 0, 255, callback)
cv2.createTrackbar('B', 'trackbar', 0, 255, callback)

# 创建一个背景图片
img = np.zeros((480,640,3), np.uint8)

while True:
    # 获取当前trackbar的值
    r = cv2.getTrackbarPos('R', 'trackbar')
    g = cv2.getTrackbarPos('G', 'trackbar')
    b = cv2.getTrackbarPos('B', 'trackbar')
    
    # 改变背景图颜色
    img[:] = [b, g, r]
    cv2.imshow('trackbar', img)
    
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break
        
cv2.destroyAllWindows()
相关推荐
青松@FasterAI36 分钟前
【NLP高频面题 - 分布式训练篇】ZeRO主要为了解决什么问题?
人工智能·深度学习·自然语言处理·分布式训练·nlp面试
lu_rong_qq37 分钟前
【LLM】一文了解 NLP 里程碑模型 BERT
人工智能·自然语言处理·bert
几两春秋梦_1 小时前
PINN求解偏微分方程
人工智能·pytorch·python
蒸土豆的技术细节2 小时前
vllm源码(一)
人工智能·自然语言处理
微凉的衣柜2 小时前
深度剖析 DeepSeek V3 技术报告:架构创新与卓越性能表现
人工智能·语言模型·大模型
量子位2 小时前
奥特曼年终总结,明确 AGI 如何实现,2025 奔向超级智能
人工智能
嘟嘟实验室2 小时前
FaceFusion3.1.1,deepfacelive模型使用教程,BUG修复,云端镜像支持
人工智能·python·macos·aigc·数字人·facefusion
夜半被帅醒2 小时前
什么是神经网络?神经网络的基本组成部分训练神经网络激活函数有哪些局限性和挑战
人工智能·深度学习·神经网络
Jackilina_Stone2 小时前
【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 1 人工神经网络 ) | 学习笔记
人工智能·神经网络·学习·hcip·huawei
伊织code2 小时前
CINN - 神经网络的编译器基础设施 [飞桨]
人工智能·神经网络·paddlepaddle·飞桨·编译·算子·cinn