【AIGC专题】Stable Diffusion 从入门到企业级实战0403

一、前言

本章是《Stable Diffusion 从入门到企业级实战》系列的第四部分能力进阶篇《Stable Diffusion ControlNet v1.1 图像精准控制》第03节, 利用Stable Diffusion ControlNet Canny模型精准控制图像生成。本部分内容,位于整个Stable Diffusion生态体系的位置如下图黄色部分所示:

二、定义

ControlNet v1.1 共提供了14个功能模型,每一个模型对应一个适用的业务场景,具体的模型信息如下图所示:

本文介绍的是ControlNet Canny模型,Canny边缘检测算法是一种提取图像中边缘信息的算法,它由John F. Canny于1986年开发,是最广泛使用的边缘检测算法之一。stable diffusion 结合 canny 边缘检测,将经典边缘检测算法与 AI 生成结合的创新尝试,可以获得更好的生成效果,有效拓展了

Stable diffusion 的应用范围。

三、工作流程

使用ControlNet Openpose工作流程如下图所示:

完整的工作流程描述,如下所示:

  1. 对输入图像进行 canny 边缘检测,得到边缘图像。
  2. 将边缘图像中的边缘线条部分作为 mask,与原图中的非边缘部分组合,得到输入图像的边缘 mask 图。
  3. 将组合后的边缘 mask 图作为条件之一,输入到 stable diffusion 模型中。
  4. stable diffusion 根据边缘信息及其他文本描述,生成包含相应边缘特征的新图像。
  5. 可以创建多个不同边缘样式的 mask,输入到 stable diffusion 中,生成具有这些边缘样式的图片。

四、创作成果

利用ControlNet Canny技术,通过姿态检测,实现的图像精准控制效果如下图所示:

目标建筑和源建筑,具有相同的边缘特征。首先识别源图像的边缘特征,然后根据边缘特征,进行目标图像生成。

五、创作过程

5.1 工作步骤

整个的创作过程可以分为4个步骤,如下图所示:

环境部署:启动ControlNet Canny WebUI服务;

模型下载:下载ControlNet Canny 模型;

操作实战:选择输入、配置参数和调试;

运行演示:展示图像生成的效果;

5.2 环境部署

为了降低集成封装对于我们了解底层实现的影响,我们采用的ControlNet v1.1 原生框架部署,而非集成可视化界面环境,具体的ControlNet Openpose服务程序如下图所示,我们只需要启动该程序即可:

5.3 模型下载

ControlNet v1.1 canny 预训练模型主要有两个,如下图所示:

5.4 操作实战

因为是可视化操作界面,可以一目了然的了解操作的方法和过程,具体细节我们不再赘述,直接上配置界面,如下图所示:

5.5 运行演示

六、小结

本章是《Stable Diffusion 从入门到企业级实战》系列的第四部分能力进阶篇《Stable Diffusion ControlNet v1.1 图像精准控制》第03节, 利用Stable Diffusion ControlNet Canny模型精准控制图像生成。下一节,我们将给大家带来,利用Stable Diffusion ControlNet Depth深度信息精准控制图像生成。

相关推荐
Sirius Wu4 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
用户51914958484518 小时前
使用CSS和GSAP创建3D滚动驱动文本动画
人工智能·aigc
Mintopia18 小时前
🚀 共绩算力:让 AI 创造力驶上“光速通道”
云计算·aigc·ai编程
Mintopia20 小时前
🌱 AIGC 技术的轻量化趋势:Web 端“小而美”模型的崛起
前端·javascript·aigc
墨风如雪1 天前
“音”你而变:Step-Audio-EditX,音频编辑的“魔法”新纪元!
aigc
短视频矩阵源码定制1 天前
矩阵系统哪个好?2025年全方位选型指南与品牌深度解析
java·人工智能·矩阵·架构·aigc
芝士AI吃鱼1 天前
我为什么做了 Cogniflow?一个开发者关于“信息流”的思考与实践
人工智能·后端·aigc
程序员X小鹿2 天前
完全免费!被这款国产AI漫画工具惊艳了,3步生成连载漫画!手机可用(附保姆级教程)
aigc
安思派Anspire2 天前
构建一个自主深度思考的RAG管道以解决复杂查询--分析最终的高质量答案(8)
aigc·openai·agent
慕云紫英2 天前
人工智能在全球多领域的应用潜力及当前技术面临的挑战
人工智能·aigc