PyTorch中特殊函数梯度的计算

PyTorch中特殊函数梯度的计算

普通函数

对于简单的多元函数,对自变量求梯度很容易,例如:
f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2

则有:
{ ∇ x f ( x , y ) = 2 x ∇ y f ( x , y ) = 2 y \left\{ \begin{aligned} \nabla_xf(x,y)&=2x\\ \nabla_yf(x,y)&=2y \end{aligned} \right . {∇xf(x,y)∇yf(x,y)=2x=2y

python 复制代码
import torch
x = torch.tensor([1, 1, 1.0], requires_grad=True)
y = torch.tensor([2, 2, 2.0], requires_grad=True)
z = torch.pow(x, 2) + torch.pow(y, 2)
z.sum().backward()
x.grad, y.grad
python 复制代码
(tensor([2., 2., 2.]), tensor([4., 4., 4.]))

特殊函数

1. Max函数

一般是求几个输入元素的最大值,如何计算梯度呢?
f ( x 0 , x 1 , ... , x n ) = max ⁡ ( x 0 , x 1 , ... , x n ) f(x_0,x_1,\ldots,x_n)=\max(x_0,x_1,\ldots,x_n) f(x0,x1,...,xn)=max(x0,x1,...,xn)

  1. 在数值上求出最大值 a a a

  2. 对函数进行变换
    f ( x 0 , x 1 , ... , x n , a ) = max ⁡ ( x 0 , x 1 , ... , x n , a ) = { a i f x < a x i f x = a f(x_0,x_1,\ldots,x_n,a)=\max(x_0,x_1,\ldots,x_n,a)= \left\{ \begin{aligned} a\quad if\ x<a\\ x\quad if\ x=a \end{aligned} \right. f(x0,x1,...,xn,a)=max(x0,x1,...,xn,a)={aif x<axif x=a

  3. 变换后就可以求梯度了
    ∇ x f ( x , a ) = { 0 i f x < a 1 i f x = a \nabla_x f(x,a)= \left\{ \begin{aligned} 0\quad if\ x<a\\ 1\quad if\ x=a \end{aligned} \right . ∇xf(x,a)={0if x<a1if x=a

在PyTorch中,如果存在多个相等的最大值,那么它们均分"1":

python 复制代码
import torch

x = torch.tensor([1, 2, 3, 4, 4, 0.], requires_grad=True)
y = torch.max(x)
y.backward()
x.grad
python 复制代码
tensor([0.0000, 0.0000, 0.0000, 0.5000, 0.5000, 0.0000])
2. Clip函数

在数据落在一定范围外时,与输入无关
f ( x ) = { x i f a < x < b a i f x < a b i f x > b f(x)= \left\{ \begin{aligned} &x\quad if\ a<x<b\\ &a\quad if\ x<a\\ &b\quad if\ x>b \end{aligned} \right. f(x)=⎩ ⎨ ⎧xif a<x<baif x<abif x>b

python 复制代码
import torch

x = torch.tensor([1, 2, 3, 4, 5, 6, 7.0], requires_grad=True)
y = torch.clip(x, 1.5, 5.5)
y.sum().backward()
x.grad
python 复制代码
tensor([0., 1., 1., 1., 1., 0., 0.])
相关推荐
柠檬0711几秒前
opencv 未知函数记录-estimateAffinePartial2D
人工智能·opencv·计算机视觉
Python极客之家1 分钟前
基于数据挖掘和知识图谱的医疗智能问诊系统
人工智能·python·机器学习·数据挖掘·毕业设计·知识图谱
Watermelo6171 分钟前
TOON:一种为大模型设计的JSON压缩型数据结构
数据结构·人工智能·语言模型·自然语言处理·数据挖掘·数据分析·json
模型启动机1 分钟前
Google A2UI技术解析:AI Agent如何构建安全且原生的用户界面
人工智能·ai·大模型
小途软件2 分钟前
springboot013基于SpringBoot的旅游网站的设计与实现
java·人工智能·pytorch·python·深度学习·语言模型
cute_ming1 小时前
LangGraph入门:LCEL详解
人工智能·机器学习·transformer·知识图谱
草莓熊Lotso2 小时前
Qt 进阶核心:UI 开发 + 项目解析 + 内存管理实战(从 Hello World 到对象树)
运维·开发语言·c++·人工智能·qt·ui·智能手机
Light606 小时前
智链全球,韧性履约:AI赋能新一代海外EPC/EPCM项目管理解决方案
人工智能·数字孪生·风险管理·ai赋能·海外epc/epcm·智慧项目管理·协同增效
嗯嗯=6 小时前
python学习篇
开发语言·python·学习
WoY20207 小时前
opencv-python在ubuntu系统中缺少依赖
python·opencv·ubuntu