《深度学习初探:使用TensorFlow和Keras构建你的第一个神经网络》


🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁

🦄 博客首页 ------🐅🐾猫头虎的博客🎐

🐳 《面试题大全专栏》 🦕 文章图文并茂🦖生动形象🐅简单易学!欢迎大家来踩踩~🌺

🌊 《IDEA开发秘籍专栏》 🐾 学会IDEA常用操作,工作效率翻倍~💐

🌊 《100天精通Golang(基础入门篇)》 🐅 学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🐅🐾🍁🐥


文章目录

《深度学习初探:使用TensorFlow和Keras构建你的第一个神经网络》

摘要

🐯 猫头虎博主 为您带来:深度学习正在改变我们看待计算机视觉、自然语言处理等领域的方式。如何入门并构建您的第一个模型呢?本文将为您详解如何使用TensorFlow和Keras两大神器轻松构建神经网络。 深度学习入门TensorFlow基础Keras教程构建神经网络

引言

🚀 深度学习,尤其是神经网络,正在为AI领域带来革命性的变革。对于初学者来说,选择合适的工具并了解基本概念是至关重要的第一步。TensorFlow和Keras由于其友好性和强大的功能,成为了许多开发者的首选。

正文

1. 深度学习与神经网络简介

🔍 深度学习是机器学习的一个子集,主要使用神经网络来模拟人的思维方式,从而实现学习。

2. TensorFlow与Keras的魅力

2.1 TensorFlow简介

🌐 TensorFlow是一个由Google开发的开源框架,用于构建和部署机器学习模型。

2.2 Keras简介

📖 Keras是一个高级神经网络API,它能够在TensorFlow、CNTK或Theano上运行。

3. 构建你的第一个神经网络

3.1 准备数据

🔢 首先,我们需要数据。为简单起见,我们使用经典的MNIST数据集。

python 复制代码
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

3.2 构建模型

🛠 使用Keras轻松定义模型。

python 复制代码
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])

3.3 训练模型

🚀 定义损失函数、优化器并训练模型。

python 复制代码
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

4. 评估模型

🎯 使用测试数据集评估模型的准确性。

python 复制代码
model.evaluate(x_test, y_test)

总结

😇 深度学习和神经网络为AI领域带来了巨大的潜力。通过TensorFlow和Keras,我们可以轻松地构建和训练模型,开启AI的探索之旅。

参考资料

  1. TensorFlow官方文档
  2. Keras官方文档
  3. 深度学习入门 | MIT Press
  4. MNIST数据集详解

👩‍💻 猫头虎博主期待与您下次的相遇!一起探索深度学习的奥秘!🌟🚀

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习 复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

相关推荐
AI人工智能+1 小时前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测
东方佑2 小时前
打破常规:“无注意力”神经网络为何依然有效?
人工智能·深度学习·神经网络
Francek Chen2 小时前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
九章云极AladdinEdu2 小时前
AI集群全链路监控:从GPU微架构指标到业务Metric关联
人工智能·pytorch·深度学习·架构·开源·gpu算力
惯导马工2 小时前
【论文导读】IDOL: Inertial Deep Orientation-Estimation and Localization
深度学习·算法
爱学习的茄子3 小时前
Function Call:让AI从文本生成走向智能交互的技术革命
前端·深度学习·openai
CoovallyAIHub3 小时前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
深度学习·算法·计算机视觉
CoovallyAIHub3 小时前
几十个像素的小目标,为何难倒无人机?LCW-YOLO让无人机小目标检测不再卡顿
深度学习·算法·计算机视觉
IMER SIMPLE4 小时前
人工智能-python-深度学习-经典网络模型-LeNets5
人工智能·python·深度学习
却道天凉_好个秋4 小时前
深度学习(五):过拟合、欠拟合与代价函数
人工智能·深度学习·过拟合·欠拟合·代价函数