语义分割实践思考记录(个人备忘录)

一、任务管理器、NVDIA的GPU利用率显示[1][2]

若需要在任务管理器中查看基于Pytorch框架的GPU利用率,那么,我们需要将监控面板监测内容调整为cuda。图一(左)即为英伟达命令行工具面板。
图一 英伟达GPU使用率监控

二、基于混淆矩阵的语义分割评价指标计算

在语义分割数据集标签制作的过程中,我们通常根据分类类别数N来以0 --- (N-1)的整型数字标记不同的分类目标。通过图二可以看出,在相同预测模型且相同数据量的情况下,方法二评价指标计算效率高(较方法一节约了一半时间),同时,充分有效地利用了上述标签标记的机制。

方法二的混淆矩阵代码编写简述:首先,根据语义分割任务分类类别数N创建N×N(N行N列)的零矩阵,然后利用pytorch中的view()函数将单幅预测结果图及标签图分别展平为一行,再者利用Python的zip()函数组合对应像素的混淆矩阵坐标,最后根据混淆矩阵坐标不断循环加一即可。若混淆矩阵坐标为(预测值,标签值),则行号为预测结果,列号为真值。
图二 混淆矩阵生成与精度指标计算

参考资料:

[1]NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客

[2]Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客

相关推荐
deflag14 小时前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
JolyouLu18 小时前
PyTorch-基础(CUDA、Dataset、transforms、卷积神经网络、VGG16)
人工智能·pytorch·cnn
boooo_hhh1 天前
深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
pytorch·深度学习·机器学习
胡桃不是夹子1 天前
CPU安装pytorch(别点进来)
人工智能·pytorch·python
potender2 天前
CGAN代码
人工智能·pytorch·深度学习
大数据追光猿2 天前
【深度学习】Pytorch的深入理解和研究
人工智能·pytorch·python·深度学习·机器学习·ai编程
阿正的梦工坊2 天前
PyTorch gather 方法详解:作用、应用场景与示例解析(中英双语)
人工智能·pytorch·python
小怪兽会微笑2 天前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
叶庭云2 天前
PyTorch 深度学习框架中 torch.cuda.empty_cache() 的妙用与注意事项
pytorch·深度学习·gpu·empty_cache·内存缓存管理
爱丫爱2 天前
Python中常见库 PyTorch和Pydantic 讲解
开发语言·pytorch·python