语义分割实践思考记录(个人备忘录)

一、任务管理器、NVDIA的GPU利用率显示[1][2]

若需要在任务管理器中查看基于Pytorch框架的GPU利用率,那么,我们需要将监控面板监测内容调整为cuda。图一(左)即为英伟达命令行工具面板。
图一 英伟达GPU使用率监控

二、基于混淆矩阵的语义分割评价指标计算

在语义分割数据集标签制作的过程中,我们通常根据分类类别数N来以0 --- (N-1)的整型数字标记不同的分类目标。通过图二可以看出,在相同预测模型且相同数据量的情况下,方法二评价指标计算效率高(较方法一节约了一半时间),同时,充分有效地利用了上述标签标记的机制。

方法二的混淆矩阵代码编写简述:首先,根据语义分割任务分类类别数N创建N×N(N行N列)的零矩阵,然后利用pytorch中的view()函数将单幅预测结果图及标签图分别展平为一行,再者利用Python的zip()函数组合对应像素的混淆矩阵坐标,最后根据混淆矩阵坐标不断循环加一即可。若混淆矩阵坐标为(预测值,标签值),则行号为预测结果,列号为真值。
图二 混淆矩阵生成与精度指标计算

参考资料:

[1]NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客

[2]Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客

相关推荐
四口鲸鱼爱吃盐8 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
leaf_leaves_leaf9 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零19 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
四口鲸鱼爱吃盐10 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类
苏言の狗10 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
四口鲸鱼爱吃盐15 小时前
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
四口鲸鱼爱吃盐15 小时前
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
love you joyfully1 天前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
这个男人是小帅2 天前
【AutoDL】通过【SSH远程连接】【vscode】
运维·人工智能·pytorch·vscode·深度学习·ssh
四口鲸鱼爱吃盐2 天前
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python