语义分割实践思考记录(个人备忘录)

一、任务管理器、NVDIA的GPU利用率显示[1][2]

若需要在任务管理器中查看基于Pytorch框架的GPU利用率,那么,我们需要将监控面板监测内容调整为cuda。图一(左)即为英伟达命令行工具面板。
图一 英伟达GPU使用率监控

二、基于混淆矩阵的语义分割评价指标计算

在语义分割数据集标签制作的过程中,我们通常根据分类类别数N来以0 --- (N-1)的整型数字标记不同的分类目标。通过图二可以看出,在相同预测模型且相同数据量的情况下,方法二评价指标计算效率高(较方法一节约了一半时间),同时,充分有效地利用了上述标签标记的机制。

方法二的混淆矩阵代码编写简述:首先,根据语义分割任务分类类别数N创建N×N(N行N列)的零矩阵,然后利用pytorch中的view()函数将单幅预测结果图及标签图分别展平为一行,再者利用Python的zip()函数组合对应像素的混淆矩阵坐标,最后根据混淆矩阵坐标不断循环加一即可。若混淆矩阵坐标为(预测值,标签值),则行号为预测结果,列号为真值。
图二 混淆矩阵生成与精度指标计算

参考资料:

1\][NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客](https://blog.csdn.net/zong596568821xp/article/details/80268034 "NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客") \[2\][Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客](https://blog.csdn.net/weixin_50767274/article/details/127173198 "Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客")

相关推荐
m0_4626052226 分钟前
第N6周:中文文本分类-Pytorch实现
pytorch·分类·数据挖掘
嵌入式-老费33 分钟前
自己动手写深度学习框架(pytorch训练第一个网络)
人工智能·pytorch·深度学习
Keep_Trying_Go1 小时前
论文Leveraging Unlabeled Data for Crowd Counting by Learning to Rank算法详解
人工智能·pytorch·深度学习·算法·人群计数
拾零吖6 小时前
CS336 Lecture_03
人工智能·pytorch·深度学习
盼小辉丶6 小时前
视觉Transformer实战 | Token-to-Token Vision Transformer(T2T-ViT)详解与实现
pytorch·深度学习·计算机视觉·transformer
二川bro7 小时前
基于PyTorch的视觉检测2025:YOLO实战与优化
pytorch·yolo·视觉检测
testtraveler11 小时前
[Fix] ImportError: libtorch_cpu.so: undefined symbol: iJIT_NotifyEvent
pytorch·python·bug
koo36413 小时前
pytorch环境配置
人工智能·pytorch·python
希露菲叶特格雷拉特19 小时前
PyTorch深度学习进阶(四)(数据增广)
人工智能·pytorch·深度学习
田里的水稻1 天前
NN_Transformer、Pytorch、TensorFlow和ONNX的名词辨析
pytorch·tensorflow·transformer