语义分割实践思考记录(个人备忘录)

一、任务管理器、NVDIA的GPU利用率显示[1][2]

若需要在任务管理器中查看基于Pytorch框架的GPU利用率,那么,我们需要将监控面板监测内容调整为cuda。图一(左)即为英伟达命令行工具面板。
图一 英伟达GPU使用率监控

二、基于混淆矩阵的语义分割评价指标计算

在语义分割数据集标签制作的过程中,我们通常根据分类类别数N来以0 --- (N-1)的整型数字标记不同的分类目标。通过图二可以看出,在相同预测模型且相同数据量的情况下,方法二评价指标计算效率高(较方法一节约了一半时间),同时,充分有效地利用了上述标签标记的机制。

方法二的混淆矩阵代码编写简述:首先,根据语义分割任务分类类别数N创建N×N(N行N列)的零矩阵,然后利用pytorch中的view()函数将单幅预测结果图及标签图分别展平为一行,再者利用Python的zip()函数组合对应像素的混淆矩阵坐标,最后根据混淆矩阵坐标不断循环加一即可。若混淆矩阵坐标为(预测值,标签值),则行号为预测结果,列号为真值。
图二 混淆矩阵生成与精度指标计算

参考资料:

1\][NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客](https://blog.csdn.net/zong596568821xp/article/details/80268034 "NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客") \[2\][Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客](https://blog.csdn.net/weixin_50767274/article/details/127173198 "Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客")

相关推荐
励志成为大佬的小杨14 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
墨绿色的摆渡人1 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
牙牙要健康1 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV2模型算法详解
pytorch·深度学习·目标检测
大脑探路者2 小时前
【PyTorch】继承 nn.Module 创建简单神经网络
人工智能·pytorch·神经网络
项目申报小狂人5 小时前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python
Niuguangshuo5 小时前
Pytorch 张量操作
pytorch·张量
蓝博AI11 小时前
基于卷积神经网络的眼疾识别系统,resnet50,efficentnet(pytorch框架,python代码)
pytorch·python·cnn
进取星辰20 小时前
PyTorch 深度学习实战(30):模型压缩与量化部署
人工智能·pytorch·深度学习
小白的高手之路1 天前
常用的卷积神经网络及Pytorch示例实现
人工智能·pytorch·python·深度学习·神经网络·cnn
ak啊1 天前
PyTorch框架-Python GPU编程
pytorch·python·gpu