语义分割实践思考记录(个人备忘录)

一、任务管理器、NVDIA的GPU利用率显示[1][2]

若需要在任务管理器中查看基于Pytorch框架的GPU利用率,那么,我们需要将监控面板监测内容调整为cuda。图一(左)即为英伟达命令行工具面板。
图一 英伟达GPU使用率监控

二、基于混淆矩阵的语义分割评价指标计算

在语义分割数据集标签制作的过程中,我们通常根据分类类别数N来以0 --- (N-1)的整型数字标记不同的分类目标。通过图二可以看出,在相同预测模型且相同数据量的情况下,方法二评价指标计算效率高(较方法一节约了一半时间),同时,充分有效地利用了上述标签标记的机制。

方法二的混淆矩阵代码编写简述:首先,根据语义分割任务分类类别数N创建N×N(N行N列)的零矩阵,然后利用pytorch中的view()函数将单幅预测结果图及标签图分别展平为一行,再者利用Python的zip()函数组合对应像素的混淆矩阵坐标,最后根据混淆矩阵坐标不断循环加一即可。若混淆矩阵坐标为(预测值,标签值),则行号为预测结果,列号为真值。
图二 混淆矩阵生成与精度指标计算

参考资料:

1\][NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客](https://blog.csdn.net/zong596568821xp/article/details/80268034 "NVIDIA查看CPU、内存、GPU、DLA使用情况_宗而研之的博客-CSDN博客") \[2\][Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客](https://blog.csdn.net/weixin_50767274/article/details/127173198 "Tensorflow模型GPU使用率低的问题_模流分析软件不占gpu_CooL截击的博客-CSDN博客")

相关推荐
能力越小责任越小YA1 小时前
服务器(Linux)新账户搭建Pytorch深度学习环境
人工智能·pytorch·深度学习·环境搭建
张子夜 iiii9 小时前
深度学习-----《PyTorch神经网络高效训练与测试:优化器对比、激活函数优化及实战技巧》
人工智能·pytorch·深度学习
盼小辉丶9 小时前
PyTorch实战(1)——深度学习概述
人工智能·pytorch·深度学习
荼蘼20 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
无规则ai1 天前
动手学深度学习(pytorch版):第六章节—卷积神经网络(1)从全连接层到卷积
人工智能·pytorch·python·深度学习·cnn
赴3351 天前
深度学习(深度神经网络)Pytorch框架
pytorch·深度学习
山烛1 天前
深度学习:CUDA、PyTorch下载安装
人工智能·pytorch·python·深度学习·cuda
Small___ming1 天前
Matplotlib 可视化大师系列(三):plt.bar() 与 plt.barh() - 清晰对比的柱状图
pytorch·信息可视化·matplotlib
瓦力wow1 天前
Pytorch安装详细步骤
人工智能·pytorch·python
伊织code2 天前
PyTorch API 2
pytorch·api·cpu·cuda·微分·autograd