【好文推荐】openGauss psycopg2 批量操作性能测试

测试版本

本测试基于 openGauss 版本的 psycopg2 驱动。
import psycopg2 as pg
>>> pg.libpq_version
90204
>>> pg.version
'2.8.6 (dt dec pq3 ext)'

测试环境

组件 说明 客户端 Rocky Linux 8 虚拟机 数据库 openGauss 3.0.3 in docker 网络 本地回路网卡 Python 3.6.8

测试接口

接口名 说明 备注 cursor.executemany(query, vars_list) 执行一个数据库操作,vars_list 列表中的所有参数会逐个被应用到query 中,每组参数都会单独封包发送给服务端。 该函数主要用于更新数据库的命令,查询返回的任何结果集都将被丢弃。在其当前实现中,此方法并不比在循环中执行execute()快。 psycopg2.extras.execute_batch(cur, sql, argslist, page_size=100) 批量执行一个数据库操作,执行的SQL和 executemany 相同,只是单个数据包发送时会发送一批SQL,数量由page_size决定。这样可以减少和服务端的通信次数 execute_batch()也可以和预处理语句(PREPARE, EXECUTE, DEALLOCATE)一起使用。 extras.execute_batch + 预处理语句 使用PREPARE提交创建一个statement,然后通过 execute_batch 提交
psycopg2.extras.execute_values(cur, sql, argslist, template=None, page_size=100, fetch=False) 将参数和SQL封装为一条SQL执行,单条SQL中参数的个数由 page_size 决定。

性能对比

INSERT

测试数据

rows executemany execute_batch prepare+execute_batch execute_values 10,000 9.782 0.707 0.501 0.266 50,000 52.979 3.123 2.637 1.226 100,000 111.504 6.831 4.557 2.125

INSERT耗时对比图

INSERT 去除 executemany 对比

UPDATE

测试数据

rows executemany execute_batch prepare+execute_batch execute_values 10,000 5.015 0.617 0.425 0.356 50,000 24.639 3.467 1.905 5.237 100,000 52.095 6.927 3.473 21.102

UPDATE 耗时对比图

DELETE

测试数据

(100000 条数据组耗时太久不做展示)
rows executemany execute_batch prepare+execute_batch execute_values 10,000 15.020 8.699 0.277 6.204 50,000 248.154 227.958 1.455 142.732

DELETE 耗时对比图

性能分析

从耗时对比来看,插入、更新、删除在不同的数据量情况下性能是不同的,用户应该根据自己的业务场景来选择使用哪一种操作接口。

插入性能从低到高依次为:

executemany < execute_batch < prepare+execute_batch < execute_values

更新性能从低到高依次为:

executemany < execute_values < execute_batch < prepare+execute_batch

删除性能从低到高依次为:

executemany < execute_batch < execute_values < prepare+execute_batch

性能的高低主要是由于在向服务端发送数据包时的方式不同导致,下面以插入的SQL为例,通过 wireshark 进行抓包可以看出 psycopg2 在通信过程中不同批处理接口的封包情况。

executemany

executemany&nbsp;提交SQL的时候是逐个应用给的参数,每个SQL都单独发送给服务端

execute_batch

execute_batch&nbsp;接口区别于&nbsp;executemany&nbsp;的是,在发送给后端的单个请求包里的数据会一次性提交一批的SQL,这样可以减少和服务器之间通信的往返次数

prepare+execute_batch

prepare&nbsp;可以提前在数据库里面创建一个预备语句对象,在执行 prepare 语句的时候,指定的SQL已经经了解析、分析、重写,这样在后续执行 EXECUTE 时就避免了重复解析分析的工作,从而起到优化性能的作用。

execute_values

前面的三个接口,不管是单个提交还是批量提交,最终都是一行数据一个SQL发送到服务端的,所以服务端需要逐个执行,而&nbsp;execute_values&nbsp;接口是会按照 page_size 分组参数后,每组参数一次性组成一个SQL进行提交。

测试代码

执行方式:python test.py <api> <row> <operation>

  • <api>&nbsp;支持:&nbsp;executemany,&nbsp;execute_batch,&nbsp;prepare,&nbsp;execute_values

  • <operation>&nbsp;支持&nbsp;insert,&nbsp;update,&nbsp;delete

coding: utf-8

Usage: python test.py <api> <count> <operation>

import time
import sys
import psycopg2 as pg
from psycopg2.extras import execute_batch, execute_values
from contextlib import contextmanager

if sys.argv[3] == "insert":
args = [[str(i), i] for i in range(int(sys.argv[2]))]
elif sys.argv[3] == "update":
args = [[i, str(i)] for i in range(int(sys.argv[2]))]
elif sys.argv[3] == "delete":
args = [[i] for i in range(int(sys.argv[2]))]
'''

  • *dbname*: the database name
  • *database*: the database name (only as keyword argument)
  • *user*: user name used to authenticate
  • *password*: password used to authenticate
  • *host*: database host address (defaults to UNIX socket if not provided)
  • *port*: connection port number (defaults to 5432 if not provided)
    '''
    conf = {
    'dbname': "postgres",
    'user': 'gaussdb',
    'password': '',
    'host': '',
    'port': 26000,
    'sslmode': 'disable'
    }

@contextmanager
def calc_time(s):
start = time.time()
yield
end = time.time()
print(f"{s} of '{sys.argv[3]}' cost: ", end - start)

sql_map = {
"insert": {
1: "INSERT INTO t_psycopg2_benchmark VALUES (%s, %s)",
2: "INSERT INTO t_psycopg2_benchmark VALUES ($1, $2)",
3: "INSERT INTO t_psycopg2_benchmark VALUES %s",
},
"update": {
1: "UPDATE t_psycopg2_benchmark as t SET f_value = %s WHERE t.f_key = %s",
2: "UPDATE t_psycopg2_benchmark as t SET f_value = $1 WHERE t.f_key = $2",
3: "UPDATE t_psycopg2_benchmark as t SET f_value = data.v1 FROM (VALUES %s) AS data (id, v1) WHERE t.f_key = data.id",
},
"delete": {
1: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key=%s",
2: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key=$1",
3: "DELETE FROM t_psycopg2_benchmark as t WHERE t.f_key IN (%s)",
}
}

def insert_data(conn):
print("* preparing data ...")
args = [[str(i), i] for i in range(int(sys.argv[2]))]
cursor = conn.cursor()
sql = "insert into t_psycopg2_benchmark values %s"
execute_values(cursor, sql, args)
conn.commit()

def main():
try:
conn = pg.connect(**conf)
print("* connect success")
except Exception as e:
print(f"connect failed: {e}")
return

cursor = conn.cursor()

sql = "drop table if exists t_psycopg2_benchmark"
cursor.execute(sql)
sql = "create table t_psycopg2_benchmark (f_key text primary key, f_value numeric)"
cursor.execute(sql)

api = sys.argv[1]
if sys.argv[3] != "insert":
insert_data(conn)

print("* benchmarking ...")
if api == "executemany":
with calc_time("executemany"):
sql = sql_map[sys.argv[3]][1]
cursor.executemany(sql, args)
conn.commit()
elif api == "execute_batch":
with calc_time("execute_batch"):
sql = sql_map[sys.argv[3]][1]
execute_batch(cursor, sql, args)
conn.commit()
elif api == "prepare":
with calc_time("execute_values"):
cursor.execute(f"PREPARE test_stmt AS {sql_map[sys.argv[3]][2]}")
if sys.argv[3] == "delete":
execute_batch(cursor, "EXECUTE test_stmt (%s)", args)
else:
execute_batch(cursor, "EXECUTE test_stmt (%s, %s)", args)
cursor.execute("DEALLOCATE test_stmt")
conn.commit()
elif api == "execute_values":
with calc_time("execute_values"):
sql = sql_map[sys.argv[3]][3]
execute_values(cursor, sql, args)
conn.commit()
else:
print(f"unknow api: {api}")

if sys.argv[3] != "delete":
cursor.execute("delete from t_psycopg2_benchmark")
conn.commit()

if name == "main":
main()

相关推荐
伏虎山真人25 分钟前
开源数据库 - mysql - mysql-server-8.4(gtid主主同步+ keepalived热切换)部署方案
数据库·mysql·开源
FIN技术铺3 小时前
Redis集群模式之Redis Sentinel vs. Redis Cluster
数据库·redis·sentinel
CodingBrother5 小时前
MySQL 中的 `IN`、`EXISTS` 区别与性能分析
数据库·mysql
代码小鑫5 小时前
A027-基于Spring Boot的农事管理系统
java·开发语言·数据库·spring boot·后端·毕业设计
小小不董5 小时前
Oracle OCP认证考试考点详解082系列16
linux·运维·服务器·数据库·oracle·dba
甄臻9245 小时前
Windows下mysql数据库备份策略
数据库·mysql
内蒙深海大鲨鱼5 小时前
qt之ui开发
数据库·qt·ui
不爱学习的YY酱5 小时前
【计网不挂科】计算机网络第一章< 概述 >习题库(含答案)
java·数据库·计算机网络
这样の我6 小时前
hbase集成phoenix
大数据·数据库·hbase
安静读书7 小时前
MongoDB 详解:深入理解与探索
数据库·mongodb